Penerapan Metode KNN dalam Memprediksi Hasil Panen Kebun Tebu di Kab Takalar


Nurwaini Situju(1*); Lilis Nur Hayati(2); Wistiani Astuti(3);

(1) Universitas Muslim Indonesia
(2) Universitas Muslim Indonesia
(3) Universitas Muslim Indonesia
(*) Corresponding Author

  

Abstract


pertahun yang berasal dari perkebunan tebu yang menjadi komoditas unggulan produksi tanaman perkebunan, namun berdasarkan data BPS terjadi penurunan produktifitas tanaman tebu tahun 2015–2020. Hal ini dikarenakan infrastruktur yang masih terbatas, kesulitan dalam permodalan, terbatasnya penguasaan teknologi baik dalam usaha tani sehingga pengelolaan tanaman tebu menjadi terhambat. Penelitian ini bertujuan untuk mengetahui hasil prediksi kebu tebu pertahunnya dengan memanfaatkan data mining. Data mining yang digunakan dalam penelitian ini adalah metode K-Nearest Neighbour (KNN) yang merupakan metode klasifikasi terhadap obyek baru berdasarkan (K) tetangga terdekatnya. KNN termasuk algoritma supervised learning, dimana hasil dari query instance yang baru, diklasifikasikan berdasarkan mayoritas dari kategori pada KNN. Hasil penelitian menunjukkan dari tahap pengujian dengan jumlah data training sebanyak 13 data didapatkan nilai persentase tertinggi pada nilai K=7 dengan persentase akurasi sebesar 76.92%.

Keywords


Tebu; Prediksi; KNN; Produksi

  
     

Article Metrics

Abstract view: 34 times
     

Digital Object Identifier

doi  https://doi.org/10.33096/busiti.v4i1.1474
  

Cite

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Buletin Sistem Informasi dan Teknologi Islam (BUSITI)

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.