
ILKOM Jurnal Ilmiah Vol. 16, No. 1, April 2024, pp. 12-26
Accredited 2nd by RISTEKBRIN No. 200/M/KPT/2020; E-ISSN 2548-7779 | P-ISSN 2087-1716

 https://doi.org/10.33096/ilkom.v1xix.xxx.x-x

12

Quantifying of RunC, Kata and gVisor in Kubernates

Rahmat Purwoko a,1; Dimas Febriyan Priambodo a,2,*; Arbain Nur Prasetyo a,3
a Cybersecurity Engineering, National Cyber and Crypto Polytechnic, H.Usa Street, Bogor 16120, Indonesia
1rahmat.purwoko@poltekssn.ac.id; 2dimas.febriyan@poltekssn.ac.id; 3arbain.nur@bssn.go.id

* Corresponding author

Article history: Received March 21, 2023; Revised May 14, 2023; Accepted February 12, 2024; Available online April 26, 2024.

Keywords: Containerization; gVisor; Kata Container; Performance Analysis; RunC; Security Analysis

Introduction

The development of applications involves a series of intricate processes, including development, testing, staging,
and production [1]. Each stage necessitates diverse environments, posing challenges in terms of software variations
and configurations. This diversity often hampers the development process, particularly with regards to time efficiency.
To address these concerns, container technology has emerged as a pivotal solution for application developers.
Containers encapsulate applications with their code, runtime, system libraries, binaries, configurations, and
dependencies [2]. While Virtual Machines (VMs) can mitigate similar challenges, container technology offers superior
flexibility, scalability, and resource efficiency in management. Moreover, containers facilitate faster packaging and
deployment compared to VMs.

Docker stands out as the foremost containerization platform [3], utilizing RunC as its default low-level container
runtime. Other notable low-level container runtimes, such as Kata Container and gVisor [4]. Kata container and gVisor
are low-level container runtimes that already have an added layer of security [5]. Security level in Kata containers and
gVisor is also supported by the use of the Virtual Machine (VM) concept where containers will be isolated and seem
separate from the host. The VM concept is of course coupled with the lightweight nature of the container [3].

In the realm of containers, the significance of Kubernetes cannot be overstated. Coordinating and managing
numerous containers pose challenges, which Kubernetes addresses as an open-source cluster manager for containers,
also known as container orchestration [6]. Kubernetes facilitates the deployment of multiple pods, where each pod
supports multiple containers that can utilize associated service [7]. Selecting the appropriate low-level container
runtimes becomes crucial in maximizing the effectiveness of a Kubernetes cluster, especially considering resource
management in a multi-tenant environment [8]. Additionally, the scalability advantage achieved through auto-scaling
demands careful attention, as efficient resource usage significantly impacts cluster performance and associated costs.
This underscores the necessity for comprehensive knowledge regarding different low-level container runtimes in terms
of both performance and security.

Research related to the performance of low-level container runtimes has basically been done. Some of the
parameters measured include CPU, memory, and the performance of the I/O block [8]. We extend the scope to include
a comparison of VMs with containers [3], [9], incorporating multiple quantifiable parameters. Furthermore, our focus

Research Article Open Access (CC–BY-SA)

Abstract

The advent of container technology has emerged as a pivotal solution for application developers, addressing concerns regarding

the seamless execution of developed applications during the deployment process. Various low-level container runtimes, including

runC, Kata Container, and gVisor, present themselves as viable options for implementation. The judicious selection of an

appropriate low-level container runtime significantly contributes to enhancing the efficiency of Kubernetes cluster utilization. To

ascertain the optimal choice, comprehensive testing was conducted, encompassing both performance and security evaluations of

the low-level container runtimes. This empirical analysis aids developers in making informed decisions regarding the selection of

low-level container runtimes for integration into a Kubernetes cluster. The performance assessments span five key parameters:

CPU performance, memory utilization, disk I/O efficiency, network capabilities, and the overall performance when executing an

nginx web server. Three distinct tools—sysbench, iperf3, and Apache Benchmark—were employed to conduct these performance

tests. The findings of the tests reveal that runC exhibits superior performance across all five parameters evaluated. However, a

nuanced consideration of security aspects is imperative. Both Kata Container and gVisor demonstrate commendable host isolation,

presenting limited vulnerability to exploitation. In contrast, runC exposes potential vulnerabilities, allowing for exploits against

the host (worker node), such as unauthorized directory creation and system reboots. This comprehensive analysis contributes

valuable insights for developers, facilitating an informed decision-making process when selecting low-level container runtimes

within a Kubernetes environment.

https://doi.org/10.33096/ilkom.v1xix.xxx.x-x
https://jurnal.fikom.umi.ac.id/index.php/ILKOM/article/view/1455

E-ISSN 2548-7779 ILKOM Jurnal Ilmiah Vol. 16, No. 1, April 2024, pp.12-26 13

 Purwoko, et. al. Quantifying of RunC, Kata and gVisor in Kubernates

on testing within a Kubernetes cluster environment distinguishes this research, as previous studies often neglected this
critical aspect.

To address the security aspect, previous studies [4] have touched on the security of container runtimes, but this
research introduces a scenario-based approach to assess the exploitability of each container. The presence of three
low-level container runtimes—RunC, Kata Containers, and gVisor—compels developers to make critical decisions
for their specific hosting needs. Consequently, a thorough investigation into the performance and security aspects of
these runtimes within a Kubernetes cluster becomes imperative. Our testing process will evaluate key performance
metrics, including memory utilization, CPU efficiency, disk I/O throughput, and network performance. Additionally,
we will conduct security tests to assess the vulnerability of these runtimes to potential exploits and their impact on the
nodes or hosts responsible for running the pod. This research aims to empower developers with a robust understanding
of the performance and security characteristics inherent in each runtime within a Kubernetes environment. This
knowledge will facilitate informed decision-making, enabling developers to select the most suitable runtime for their
specific use case, ultimately enhancing the overall security and performance of containerized applications in a dynamic
computing landscape.

Literature Review

A. Containers

Containers are a lightweight, portable, and consistent way to package, distribute, and run applications and their
dependencies [10], [11]. They encapsulate an application and its required components, providing isolation and
ensuring that it runs consistently across various environments. Popular containerization tools include Docker and
container orchestration systems like Kubernetes. Containers enhance the portability of applications across different
cloud providers and even on-premises environments. They encapsulate everything needed to run an application,
making it easier to move applications between different cloud platforms. From efficiency aspect, containers share the
host operating system's kernel, reducing overhead and enabling the deployment of more containers on a single host.
This efficiency aligns with the scalability and cost-effectiveness offered by cloud services.

B. Kubernates

Kubernetes functions as an open-source orchestrator for deploying containerized applications, providing
scalability, automated deployment, and management capabilities [2]. Its roots can be traced to Google's internal Borg
system, later named Omega, which was developed to oversee thousands of servers owned by Google. The increasing
adoption of Kubernetes is in tandem with the transition from monolithic to microservices architecture. In contrast to
the monolithic approach, microservices break down applications into smaller, specialized components that are
interconnected to perform specific tasks, as illustrated in Figure 1, facilitating understanding for those new to the
technology.

Figure 1. Microservices architecture from Kubernates in Action [12]

The surge in container usage for application deployment further fuels Kubernetes' popularity. The Kubernetes

cluster architecture, illustrated in Figure 2, comprises master and node components [13]. The master component,

featuring Kube-apiserver, acts as a liaison, communicating with etcd—a distributed data store. Kube-Controller

manager oversees controllers like replication, pod, services, and endpoints. The Cloud-controller manager interacts

with cloud services, while Kube-scheduler handles pod-to-node scheduling.

14 ILKOM Jurnal Ilmiah Vol. 16, No. 1, April 2024, pp.12-26 E-ISSN 2548-7779

Purwoko, et. al. Quantifying of RunC, Kata and gVisor in Kubernates

Figure 2. Kubernates cluster architecture [14]

Node components consist of Kubelets ensuring container runtime within pods, Kube-proxy managing low-level

networking on nodes, and container managers (or runtimes) directly controlling containers. Figure 3 delves into the

Container Runtime Interface (CRI) architecture, serving as the link between kubelet components and container

runtimes. Three CRIs—Dockershim, cri-containerd, and cri-o—offer diverse container runtimes for managing

containers at the low level within the Kubernetes cluster. Understanding this architecture is crucial for effective

utilization of Kubernetes in deploying and managing container-based applications.

Figure 3. CRI in kubernetes cluster

C. Low level container Runtime

A Low-Level Container Runtime, often referred to simply as a "container runtime," is a fundamental component
responsible for executing and managing containers on a host system. It operates at a lower level, interacting closely
with the underlying infrastructure and facilitating the creation and execution of containerized applications. Several
key aspects define the significance and functionality of low-level container runtimes. Low-level container runtimes
play a critical role in ensuring the security of containerized applications. They implement measures to prevent
unauthorized access, restrict resource usage, and maintain the integrity of the host system [15]. Understanding low-
level container runtimes is essential for developers, system administrators, and anyone involved in containerized
application deployment. These runtimes form the backbone of container technology, contributing to the efficiency,
security, and portability of applications across various computing environments.

Low level container runtimes are container runtimes that only focus on creating containers. Low level container
runtimes implement the OCI runtime and make it possible to create containers from “filesystem bundles”. Some of
the low level container runtimes include RunC, gVisor, and Kata container [4]. RunC is one of the low level container
runtimes which is used by default in container runtimes. Using RunC allows users to access the host more by using
privileged mode. RunC is mostly used for nested containers or running containers on top of containers. RunC uses
libcontainer to do the job of creating containers and works as a wrapper to abstract system calls [3]. RunC provides
implementations for creating containers using namespaces, control groups, network interfaces, file access controls,
security profiles, and capabilities.

E-ISSN 2548-7779 ILKOM Jurnal Ilmiah Vol. 16, No. 1, April 2024, pp.12-26 15

 Purwoko, et. al. Quantifying of RunC, Kata and gVisor in Kubernates

Figure 4. RunC Architecture [3]

Figure 4 illustrates the architectural details of container runtimes, particularly emphasizing the connectivity
between the application and the host kernel within the RunC container. Notably, the depiction unveils that the
application running on the RunC container establishes a direct connection with the host kernel. This architectural
characteristic implies that RunC, as a container runtime, enjoys a higher level of access to the host environment, as it
is not entirely isolated from the underlying host system. The reduced isolation suggests that RunC operates with a
certain degree of proximity and interaction with the host, potentially having broader privileges compared to more
isolated runtimes. This nuanced connectivity is crucial for developers and system administrators to comprehend, as it
impacts the security and access control considerations when selecting RunC as the container runtime.

Figure 5. Kata container architecture [3]

The subsequent low-level container runtime we explore is the Kata container, designed to construct a secure and
efficient container runtime by incorporating a lightweight virtual machine (VM) to enhance container isolation [16].
Figure 5 illustrates that Kata container employs robust isolation through lightweight hardware virtualization at the
container layer. Unlike RunC, Kata container utilizes a guest kernel dedicated to booting the VM, optimizing both
boot time and memory usage [3].

Figure 6. gVisor Architecture [17]

The final low-level container runtime in consideration is gVisor, developed by Google. gVisor distinguishes itself

by utilizing an application kernel, coded in Go. Unlike other runtimes, gVisor generates its own kernel, operating

independently. This characteristic enhances isolation from the host environment. In Figure 6, the utilization of this

16 ILKOM Jurnal Ilmiah Vol. 16, No. 1, April 2024, pp.12-26 E-ISSN 2548-7779

Purwoko, et. al. Quantifying of RunC, Kata and gVisor in Kubernates

independent kernel is depicted, illustrating its ability to intercept application system calls and function akin to a guest

kernel. Notably, this is accomplished without necessitating translation through hardware virtualization. gVisor

employs a unique approach to container technology, creating a distinct kernel that runs autonomously. The

applications within the gVisor container operate on Sentry, an infrastructure that implements Linux and functions

within the Linux environment [18].

D. Related Research

[19] the research focuses on comparisons to determine which virtualization technology is better to use. Comparable
virtualization technology, namely between containers and VM. Tests are carried out with various benchmarking tools
to measure the performance of containers and virtual machines. Several tools are used, including 7 Zip compression
tests used to measure CPU performance, RAMspeed/SMP to measure memory performance, Iozone benchmark to
determine disk I/O performance, Apache Benchmark used to perform load testing, and Eight Queen problem and 8
puzzle tests used to measure operation speed [19]. The results of the research conducted show that Docker containers
have better performance when compared to VMs from each of the tests tested.

Research [20] focuses on performance comparisons between several virtualization technologies, namely
Unikernels, containers, hypervisors, and Kata containers. Several parameters were tested, namely the size of the
image, boot time, memory utilization and CPU utilization [20]. The test results show that the use of containers has an
efficiency level in terms of memory and CPU consumption.

Research [3] focuses on performance comparisons between RunC and Kata container which is a low level
container runtime. Testing is carried out because the two low level container runtimes represent different architectures.
Testing is done by creating container environments on identical VMs. Container runtimes used, namely Docker.
Several parameters were tested to determine the performance of the low level container runtime, namely the container
boot test, I/O performance using the Bonnie++ tool, CPU and memory utilization, and network performance using the
Python-based psutil tool [3]. The results of the performance tests conducted show that RunC has better performance
when compared to Kata container.

Method

The research design used is based on Benchmarking Methodology for Network Security Device Performance draft-

ietf-bmwg-ngfw-performance [21]. The methodology was released in October 2021 by the Benchmarking Technology

Working Group. Benchmarking is a series of processes carried out by comparing two or more similar objects to obtain

results that can be used as benchmarks for usage. One of the goals of doing benchmarking is to find out the level of

performance of the object being tested [22]. Several stages that will be carried out are test objectives, test setup, test

parameters, test procedures, measurement, and reporting. All the steps to be carried out can be seen in Figure 7.

Figure 7. Benchmarking Methodology [21]

A. Objective

Some of the things that are prepared at this stage are determining the parameters to be tested, the device (complete
with specifications) and the tools to be used to carry out performance and security tests. The performance parameters
that will be tested in this study are CPU performance, memory performance, disk I/O performance, network
performance, and pod performance when running nginx. Testing the performance of nginx running in the pod is carried
out to determine the effect of the low level container runtime used on the web server in handling received requests. This
needs to be done because to find out the optimal performance of the web server that is running. Problems that arise due
to a non-optimal web server can cause web applications to be disrupted and even stop working. The security parameter
to be tested is the level of isolation provided by each low level container runtime that is used for the worker node.

B. Test Setup

The installation process is carried out on the application in the test environment and the tools used to measure the
tests carried out. All testing requirements that have been installed at this stage will be used to carry out the next stage.
The need for the testing environment and the tools used can be seen in the previous stage, namely the objective stage.

E-ISSN 2548-7779 ILKOM Jurnal Ilmiah Vol. 16, No. 1, April 2024, pp.12-26 17

 Purwoko, et. al. Quantifying of RunC, Kata and gVisor in Kubernates

C. Test Procedure

Testing was carried out on a test environment that had been prepared previously. There are two test schemes that
will be carried out, that is:

• Testing of scheme 1 is done by testing the performance of CPU, memory, disk I/O, network, and nginx on
pods running with three different low-level container runtimes on Kubernetes clusters.

• Scheme 2 testing is carried out by conducting several tests related to the low-level container runtimes used
to determine the security in the form of the isolation level provided by each low level container runtime used.
Further analysis is carried out to determine the extent to which containers can affect worker nodes. Security
testing is carried out by utilizing the "SYS_ADMIN" capability which allows pods to mount [23].

Performance testing is carried out at least twice to fulfill the repeatability element [22]. In this test, it was repeated
ten times. This is to ensure that the performance test results do not show a significant difference, so that the results
obtained allow it to be used as a reference in analyzing the low level container runtime performance.

D. Measurement

Calculations were made on several parameters of the results of the tests carried out. Calculations are performed to
determine the desired result according to predetermined parameters. The results of the calculations carried out will be
presented in the form of a graph of the test results which can then be used as material in conducting a performance and
safety analysis according to the specified parameters.

E. Reporting

A final report format is created based on the test results obtained from the measurement stage that has been carried
out. The contents of the report made are graphs and comparison tables of the results of the overall scheme testing carried
out and accompanied by an analysis of the test results. The existing graphs and comparison tables are then analyzed to
find out how the performance and security of the low level container runtime used is. Knowledge of the results obtained
can be used by application developers in determining which low level container runtime to use in the Kubernetes cluster
for the production stage later.

Results and Discussion

A. Test Parameters

1. Performance Testing Parameters
Performance testing is carried out to find out the difference in performance of the low level container runtime

used in the Kubernetes cluster. The performance testing parameters used can be seen in Table 1.

Table 1. Performance Testing Parameters

No Parameter Description

1 CPU CPU performance testing is done using the sysbench tool. The command that is executed is a

calculation of prime numbers up to the value specified with the --cpu-max-prime option. The specified

value limit is 1000000 to make it easier to see the performance difference from the low level container

runtimes used. The command is sysbench --test=cpu --cpu-max-prime=1000000 --num-threads=1 run.

2 Memory Still using the sysbench tools to allocate a memory buffer and then read and write iteratively until the
reserved volume (-- memory-total-size) is reached. The command used is sysbench memory --

threads=1 run.

3 Disk I/O The sysbench tool is used to evaluate several tests to compare performance related to data read and

write speed, the number of searches that can be performed per second and the number of file metadata

operations that can be performed per second. In the disk I/O test, several files with a total of 4 Giga

Bytes were created which were divided into 128 files. The files that have been created are then read
and written from each low level container runtime used. There are two commands used, namely the

command to create a file and the command to run tests on files. The command used to create the file

is sysbench fileio --file-totalsize=4G --file-test-mode=rndrw --time=300 --max-requests=0 prepare.

The command used is sysbench fileio --file-total-size=4G --file-test-mode=rndrw -- time=300 --max-
requests=0 run

4 Jaringan Network performance testing is done using the iperf3 tool. Measurements were carried out using two
pods where one pod runs as an iperf3 server and the other pod as an iperf3 client. The iperf3 -s -i2

command is executed on the server pod, while the iperf3 -c (ipadd_server) -i2 -t20 command is

executed on the client pod.

5 Nginx Pulled the image from nginx and then run it on ports 30151 (RunC), 30152 (Kata), and 30153 (gVisor).

Nginx performance testing uses Apache Bench by sending 10,000 requests. The command used is ab
-n 10000 -c 100 http://ip_address_pod:port_service/.

2. Security Testing Parameters

Security testing is carried out by looking for differences in the kernel used in each low level container runitmes
that is run. The goal is to find out how far the isolation that is carried out at each low level container runtime can

18 ILKOM Jurnal Ilmiah Vol. 16, No. 1, April 2024, pp.12-26 E-ISSN 2548-7779

Purwoko, et. al. Quantifying of RunC, Kata and gVisor in Kubernates

secure the host, as well as the worker node that runs the container. Implementation is carried out by deploying
pods that have added the "SYS_ADMIN" capability, so that further analysis can be carried out regarding the extent
of isolation carried out by the low level container runtime to the nodes used.

3. Test Environment Specifications
Based on the results of the analysis of the needs of the testing system, hardware and software are needed to

carry out performance and security testing of the low level container runtime used. The specifications for the
computer, master node, and worker node used can be seen in Table 2. One VM created will act as the master node
and the other VMs as worker nodes. The use of one master node and one worker node aims to fulfill the minimum
requirements for creating a Kubernetes cluster.

Table 2. Test device specifications

Spesifikasi Server Master Node Worker Node

Operating system Proxmox Virtual Environment 7.2-3 Ubuntu Server 20.04 Ubuntu Server 20.04

RAM 32 GB 16 GB 8 GB

Storage 1 TB 200 GB 200 GB

Processor
Intel Xeon E-2224 (8M Cache, 3.4

GHz)
4 logic CPU (2 socket, 2

core)
2 logic CPU (1 socket, 2

core)

B. Test Setup

There is one container runtimes and several low level container runtimes installed to be able to perform
performance and security testing. Some of the necessary tools are also installed at this stage. Kubernates Cluster
installation and configuration begins with the installation of the Container Runtime (container). The second stage is
the installation of Kubernates, which doesn't forget to pull configuration images with kubeadm to then obtain a token
so that the worker node can join the master node by not forgetting to add the calico add-on.

By default, a container runtime will execute RunC immediately, therefore it is necessary to configure it so that the
low level container runtime used in the Kubernetes cluster runs other runtimes such as Kata container or gVisor.
Configuration is done in the /etc/containerd/config.toml file by adding Kata or gVisor as one of the runtimes that can
be used.

Two images are used, one of which is built from the Dockerfile that was created and the other is pulled directly
from Docker Hub. Image prsty4231/ubuntu_prase. Another image used is nginx 1.18.

C. Test Procedure

1. Performance Test
Tests on each parameter with a different low level container runtime were carried out ten times. After each

test is completed, the pod used is immediately deleted to provide a test environment with the same resources.
This is also done so that the pod used does not affect other pods in the used Kubernetes cluster.

2. Security Test

Figure 8. Added SYS_ADMIN capability

The addition of the SYS_ADMIN capability is carried out for each YAML file used, as shown in Figure 8.
The added capability aims to make more syscalls on the host (worker node). The security tests performed also
utilized Linux cgroups as a mechanism to isolate running pods. The root user which is used by default in pods is
also one of the supporters in conducting security testing. The root user is important because it will have full
rights over the pods under test. The exploit requires the cgroup as the media to create a "release_agent" file and
make a "release_agent" call by killing all processes in the cgroup. In simple terms, this can be done by adding a

E-ISSN 2548-7779 ILKOM Jurnal Ilmiah Vol. 16, No. 1, April 2024, pp.12-26 19

 Purwoko, et. al. Quantifying of RunC, Kata and gVisor in Kubernates

cgroup controller and creating a child group. This can be done by creating the /tmp/cgrp directory, then adding
the RDMA cgroup controller and creating a child cgroup. The technique used generally works on most cgroup
controllers.

Figure 9. The worker node reboot was successful

Figure 9 shows the command to reboot the worker node from within the pod successfully executed. This proves
that there is no isolation carried out by RunC which acts as a low level container runtime on the running pod. In
contrast to RunC, Kata container and gVisor show an error message when the script wants to run shown in Figure 10.
This certainly shows that both Kata container and gVisor provide a higher level of isolation to the pods being run.

Figure 10. Error on Kata container and gVisor

D. Measurement

1. CPU Performance

Figure 11. CPU performance test results

20 ILKOM Jurnal Ilmiah Vol. 16, No. 1, April 2024, pp.12-26 E-ISSN 2548-7779

Purwoko, et. al. Quantifying of RunC, Kata and gVisor in Kubernates

Figure 11 shows the results of CPU performance tests conducted on three pods with different low level
container runtimes. The results obtained are presented in graphical form which states the unit of time in seconds.
The results show the performance of the CPU in running the sysbench command to calculate 1,000,000 prime
numbers. Testing is carried out by limiting the use of threads, namely only using one thread for each test carried
out. The faster the time required to process the CPU test being carried out, the better the performance. Tests
carried out ten times on each pod showed different results. The average test is carried out for 10 seconds. Figure
11 also shows that pods with RunC as the low level container runtime require the fastest time compared to Kata
container and gVisor. The shortest time obtained from the results of the tests carried out was 10.1001 seconds
using RunC, while the slowest time obtained was 10.1962 seconds using the Kata container.

2. Memory Performance

Figure 12. Memory performance test results

Figure 12 shows the results of memory performance tests conducted on three pods with different low level
container runtimes. The results obtained are presented in graphical form stating Mebibyte/second (MiB/s). The
difference between Mebibyte (MiB) and Megabyte (MB) lies in the number of bytes they have. One MiB has
a total of 1,048,576 bytes, while one MB only has 1,000,000 bytes. This of course shows the difference between
the use of MiB and MB, where MiB represents a larger unit of bytes when compared to MB. The results show
the performance of the memory in running the sysbench command to provide the workload for the memory
used. Sysbench will allocate a buffer, which by default is provided at 1 Kibi Byte (KiB). The number of sizes
processed in this test is 102400 MiB. Executed commands will read and write to memory on each execution
that is carried out randomly or sequentially. The more processing that can be done in seconds, the better the
performance. Tests carried out ten times on each pod showed different results. Figure 11 also shows that pods
with RunC as the low level container runtime tend to be the fastest when compared to Kata container and
gVisor. The highest value obtained is 5933.24 MiB/s using RunC, while the lowest value obtained is 1036.97
using the Kata container.

3. Disk I/O Performance

Figure 13. Disk I/O performance test results (read)

E-ISSN 2548-7779 ILKOM Jurnal Ilmiah Vol. 16, No. 1, April 2024, pp.12-26 21

 Purwoko, et. al. Quantifying of RunC, Kata and gVisor in Kubernates

Figure 14. Disk I/O performance test results (write)

Figures 13 and 14 show the results of disk I/O performance tests performed on three pods with different
low level container runtimes. The results obtained are presented in graphical form stating Mebibyte/second
(MiB/s). There are two test results obtained, namely the condition when the disk reads and writes data. There
are a total of 4 GB of files processed, where the files are divided into 128 files as shown in Figure 15.

Figure 15. 128 test files

4. Performa Nginx

Figure 16. Nginx performance test results

Figure 16 shows the results of the nginx performance test conducted on three pods with different low level
container runtimes. The results obtained are presented in graphical form which states the time needed by nginx
as a web server to process requests received. Apache Benhmark is used in the nginx test which is done by using
the "-n" parameter to determine how many times the web server is accessed. Testing is done by adding
parameters 10,000 to "-n" and 100 to "-c" which indicate the number of URLs accessed at the same time. The
results obtained from the tests carried out show the performance of nginx, namely the time needed to serve
requests. The faster the time needed by nginx to process requests, the better the performance. Tests that were
carried out ten times for each pod showed that pods with RunC as the low level container runtime tended to be
the fastest in processing requests. The shortest time obtained was 194.071 seconds using RunC, while the
slowest time was 230.252 seconds using gVisor.

E. Reporting

1. Performace Analysis

From the results of tests carried out on several parameters to determine the performance and security of pods

running with different low level container runtimes, it was found that the results obtained were different. On

22 ILKOM Jurnal Ilmiah Vol. 16, No. 1, April 2024, pp.12-26 E-ISSN 2548-7779

Purwoko, et. al. Quantifying of RunC, Kata and gVisor in Kubernates

CPU performance after ten times of testing, the average CPU performance is 10.1493 seconds (RunC); 10.2132

seconds (Kata); and 10.1823 seconds (gVisor), as shown in Figure 17. The average results of tests conducted on

CPU performance show that RunC has the best performance, when compared to Kata container and gVisor. This

shows that the additional layer of isolation performed on the Kata container decreases CPU performance, where

the CPU works harder when compared to RunC which runs on the same kernel as the host. Isolation is done on

Kata, namely by virtualizing the CPU, so that it seems to be a new, independent system to be used.

Figure 17. Average CPU performance test results

 Ten times testing on memory performance, obtained an average memory performance of 5910.45 MiB/s
(RunC); 1043.23 MiB/s (Kata); and 5477.72 MiB/s (gVisor), as shown in Figure 18. The average results of tests
conducted on memory performance show that RunC has the best performance, when compared to Kata container
and gVisor. Virtualization performed by Kata container shows the lowest memory performance. This is different
from gVisor which, although it applies isolation to running pods, can still show good memory performance,
where the results are not far from those obtained by RunC.

Figure 18. Average Memory performance test results

 After ten tests on disk I/O performance, an average read performance of 62.28 MiB/s (RunC) was obtained;
46.71 MiB/s (Kata); and 52.3 MiB/s (gVisor), as shown in Figure 19. On write performance, the average yield
is 41.65 MiB/s (RunC); 31.1 MiB/s (Word); and 34.58 MiB/s (gVisor), as shown in Figure 20. The average
results of tests conducted on disk I/O performance both read and write show that RunC has the best performance,
when compared to Said container and gVisor. The virtualization performed by the Kata container results in the
highest reduction in memory performance. This can happen because a pod that uses Kata container will create a
separate storage layer between the guest and the host. There is also an issue with the buffer cache used by Kata
container and gVisor due to their state applying additional isolation.

E-ISSN 2548-7779 ILKOM Jurnal Ilmiah Vol. 16, No. 1, April 2024, pp.12-26 23

 Purwoko, et. al. Quantifying of RunC, Kata and gVisor in Kubernates

Figure 19. Average disk I/O performance (read)

Figure 20. Average disk I/O performance (write)

 On network performance after ten times of testing, the average memory performance is 5910.45 MiB/s
(RunC); 1043.23 MiB/s (Kata); and 5477.72 MiB/s (gVisor), as shown in Figure 21. The average results of tests
conducted on network performance show that RunC has the best performance, when compared to Kata container
and gVisor. The isolation mechanism implemented by Kata container and gVisor has a significant impact on the
network performance obtained. This is a performance issue that needs to be adjusted so that the difference in
performance is not too great. One of the adjustments can be made by replacing the CNI used.

Figure 21. Average network performance test results

In ten times of testing conducted on the nginx web server on each pod running with a different low level
container runtime, the average performance was 195.892 seconds (RunC); 205.986 seconds (Kata); and 225.261
seconds (gVisor) which can be seen in Figure 22. The average results of the tests conducted show that RunC has
the best performance, when compared to Kata container and gVisor. Pods with RunC require the least average

24 ILKOM Jurnal Ilmiah Vol. 16, No. 1, April 2024, pp.12-26 E-ISSN 2548-7779

Purwoko, et. al. Quantifying of RunC, Kata and gVisor in Kubernates

time to receive and process 10,000 requests which are parameters to the tests performed. The difference in the
results obtained is very closely related to the network architecture provided by each low level container runtime
used. It can be seen that gVisor which uses netstack which is handled by Sentry has the lowest ability to receive
and process requests in the tests carried out. The use of this additional layer causes a bottleneck to occur on the
network used by gVisor.

Figure 22. Average nginx performance test results

2. Security Analysis

The security tests that have been carried out produce data related to the differences in kernels used on hosts
and pods running on the Kubernetes cluster. Table 3 shows that the kernel used by the host (worker node) is the
same as that used by the pod running using RunC. This is of course dangerous, if a pod that uses RunC as a low
level container runtimes runs in root mode because there is a loophole to exploit the host where a pod is running.

Table 3. List of kernels

No Type Kernel

1
host (worker

node)

Linux master 5.4.0-121-generic #137-Ubuntu SMP Wed Jun 15 13:33:07 UTC 2022 x86_64

x86_64 x86_64 GNU/Linux

2 RunC
Linux master 5.4.0-121-generic #137-Ubuntu SMP Wed Jun 15 13:33:07 UTC 2022 x86_64

x86_64 x86_64 GNU/Linux

3 Kata
Linux ubuntu-kata 5.15.26.container #1 SMP Wed Jun 8 16:46:19 UTC 2022 x86_64

x86_64 x86_64 GNU/Linux

4 gVisor
Linux ubuntu-gvisor 4.4.0 #1 SMP Sun Jan 10 15:06:54 PST 2016 x86_64 x86_64 x86_64

GNU/Linux

Further security testing was carried out to prove the existing loophole. The goal is to create a new directory on

the host via the running pod. Another test was conducted by attempting to run the reboot host command from a
pod running on a Kubernetes cluster. The results obtained can be seen in Table 4 where the vulnerabilities found
in pods running using RunC show vulnerabilities that are dangerous when exploited. An attacker can execute
commands on the host via the currently running pod. Some examples of commands that can be executed are
creating a new directory, viewing running processes, rebooting, and so on. In fact, the worst thing that can happen
is that an attacker can shut down a host that acts as a worker node. This of course will reduce the performance of
the Kubernetes cluster in running its services due to the reduced number of worker nodes used. The entire
Kubernetes cluster may also not work, if the exploit successfully paralyzes all worker nodes used to run the service.

Table 4. Security test results

No Container Runtime Isolation Description

1 RunC No Pod successfully modified host

2 Kata Lightweight VM Pod not successfully modified host

3 gVisor Sandboxing Pod not successfully modified host

E-ISSN 2548-7779 ILKOM Jurnal Ilmiah Vol. 16, No. 1, April 2024, pp.12-26 25

 Purwoko, et. al. Quantifying of RunC, Kata and gVisor in Kubernates

Conclusion

The performance comparison between the implementations of RunC, Kata Containers, and gVisor reveals

significant differences, particularly in terms of CPU, memory, disk I/O, network, and nginx performance, with pods

utilizing RunC as the low-level container runtime demonstrating the best overall performance. A notable distinction

is observed in network performance, where the maximum speed capacity achievable by Kata Containers and gVisor

is considerably smaller compared to RunC. However, it is crucial to note that while RunC exhibits superior

performance, it is the only low-level container runtime tested that has shown vulnerabilities from a security standpoint.

This vulnerability arises due to the lack of isolation from the host and the utilization of the same kernel as the host.

Some exploitations that can be carried out include executing commands such as mkdir, ls, and reboot.

Acknowledgement

Thanks to National Cyber and Crypto Polytechnic for support of this research and all author for great colaboration.

References

[1] C. Itron, S. Release, C. Delivery, C. D. Benefi, A. Software, and D. Methodology, “Continuous Delivery

Software Release Methodology.”

[2] K. H. Brendan Burns, Joe Beda, Kubernetes: Up and Running, 2nd Editio. Calfornia: O’Reilly Media, Inc.,

2019.

[3] R. Kumar and B. Thangaraju, “Performance Analysis Between RunC and Kata Container Runtime,” in 2020

IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT),

2020, pp. 1–4. doi: 10.1109/CONECCT50063.2020.9198653.

[4] O. Flauzac, F. Mauhourat, and F. Nolot, “A review of native container security for running applications,”

Procedia Comput. Sci., vol. 175, no. 2019, pp. 157–164, 2020, doi: 10.1016/j.procs.2020.07.025.

[5] A. Randazzo and I. Tinnirello, “Kata Containers: An Emerging Architecture for Enabling MEC Services in

Fast and Secure Way,” in 2019 Sixth International Conference on Internet of Things: Systems, Management

and Security (IOTSMS), 2019, pp. 209–214. doi: 10.1109/IOTSMS48152.2019.8939164.

[6] D. Bernstein, “Containers and Cloud: From LXC to Docker to Kubernetes,” IEEE Cloud Comput., vol. 1, no.

3, pp. 81–84, 2014, doi: 10.1109/MCC.2014.51.

[7] V. Medel, O. Rana, J. Á. Bañares, and U. Arronategui, “Modelling Performance & Resource Management in

Kubernetes,” in 2016 IEEE/ACM 9th International Conference on Utility and Cloud Computing (UCC), 2016,

pp. 257–262.

[8] L. Espe, A. Jindal, V. Podolskiy, and M. Gerndt, “Performance evaluation of container runtimes,” CLOSER

2020 - Proc. 10th Int. Conf. Cloud Comput. Serv. Sci., no. Closer, pp. 273–281, 2020, doi:

10.5220/0009340402730281.

[9] T. V Doan et al., “Containers vs Virtual Machines: Choosing the Right Virtualization Technology for Mobile

Edge Cloud,” in 2019 IEEE 2nd 5G World Forum (5GWF), 2019, pp. 46–52. doi:

10.1109/5GWF.2019.8911715.

[10] T. Siddiqui, S. A. Siddiqui, and N. A. Khan, “Comprehensive Analysis of Container Technology,” in 2019

4th International Conference on Information Systems and Computer Networks (ISCON), 2019, pp. 218–223.

doi: 10.1109/ISCON47742.2019.9036238.

[11] C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi, “Cloud Container Technologies: A State-of-the-Art Review,”

IEEE Trans. Cloud Comput., vol. 7, no. 3, pp. 677–692, 2019, doi: 10.1109/TCC.2017.2702586.

[12] M. Luksa, Kubernetes in Action. Manning Publications, 2018.

[13] G. Sayfan, Mastering Kubernetes: Large scale container deployment and management. Birmingham: Packt

Publishing, 2017.

[14] “Cluster Architecture | Kubernetes.” https://kubernetes.io/docs/concepts/architecture/ (accessed Jan. 22,

2024).

[15] K. Lee, J. Kim, I.-H. Kwon, H. Park, and C.-H. Hong, “Impact of Secure Container Runtimes on File I/O

Performance in Edge Computing,” Appl. Sci., vol. 13, no. 24, p. 13329, 2023, doi: 10.3390/app132413329.

https://doi.org/10.1109/CONECCT50063.2020.9198653
https://doi.org/10.1016/j.procs.2020.07.025
https://doi.org/10.1109/iotsms48152.2019.8939164
https://doi.org/10.1109/MCC.2014.51
https://doi.org/10.5220/0009340402730281
https://doi.org/10.1109/5GWF.2019.8911715
https://doi.org/10.1109/ISCON47742.2019.9036238
https://doi.org/10.1109/TCC.2017.2702586
https://doi.org/10.3390/app132413329

26 ILKOM Jurnal Ilmiah Vol. 16, No. 1, April 2024, pp.12-26 E-ISSN 2548-7779

Purwoko, et. al. Quantifying of RunC, Kata and gVisor in Kubernates

[16] Z. Yu, “The Application of Kata Containers in Baidu AI Cloud,” no. October, 2019.

[17] “What is gVisor? - gVisor.” https://gvisor.dev/docs/ (accessed Jan. 22, 2024).

[18] E. G. Young, P. Zhu, T. Caraza-harter, A. C. Arpaci-dusseau, and R. H. Arpaci-dusseau, “The True Cost of

Containing : A gVisor Case Study”.

[19] A. M. Potdar, D. G. Narayan, S. Kengond, and M. M. Mulla, “Performance Evaluation of Docker Container

and Virtual Machine,” Procedia Comput. Sci., vol. 171, no. 2019, pp. 1419–1428, 2020, doi:

10.1016/j.procs.2020.04.152.

[20] V. Aggarwal and B. Thangaraju, “Performance Analysis of Virtualisation Technologies in NFV and Edge

Deployments,” in 2020 IEEE International Conference on Electronics, Computing and Communication

Technologies (CONECCT), 2020, pp. 1–5. doi: 10.1109/CONECCT50063.2020.9198367.

[21] B. Balarajah; C. Rossenhoevel; B. Monkman, “Benchmarking Methodology for Network Security Device

Performance,” 2022.

[22] A. Akinshin, Pro .NET Benchmarking: The Art of Performance Measurement, 1st ed. 2019.

[23] M. Reeves, “Investigating Escape Vulnerabilities in Container Runtimes,” Purdue University Graduate

School, 2021.

https://doi.org/10.1016/j.procs.2020.04.152
https://doi.org/10.1109/CONECCT50063.2020.9198367

