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Introduction  

Forests are a crucial component of the Earth's ecosystem, and everyone is responsible for their protection. Forest 
fire pose a significant ecological hazard, with smoke being an initial characteristic of such fires [1], [2]. Associated 
impacts of forest fire include environmental pollution and damage, such as harm to flora and fauna, water and soil 
degradation, and even posing risks to human life and property. This is particularly pertinent in tropical climate 
countries like Indonesia. In 2020, according to data from the National Disaster Management Agency (BNPB), at least 
300 thousand hectares of forest area burned across various provinces. In Asia, Indonesia stands as one of the countries 
experiencing the most severe forest fire incidents annually. Forest fires can be caused by various factors, including 
climate, land cover conditions, soil types, and other biophysical environmental factors [3].  

Detection technology for forest fire is highly necessary as a preventive measure before the spread or expansion of 
fire points. Several forest fire detection systems already exist, such as fire, smoke, and temperature sensors, which 
have been studied extensively. The detected objects vary, including temperature, fire, smoke, air humidity, and images. 
Images, another term for visual objects, play a crucial role as visual information components in multimedia. Image 
objects are typically detected using methods such as Color Filtering (RGB), Gray Level Co-Occurrence Matrices 
(GLCM), Hue Saturation (HSV), and YcbCr. The primary drawback of using Lab color is that it is time-consuming 
and involves a lot of manual work [4].  

Previous research conducted by [5] focused on segmenting, coloring, and classifying tumor regions to identify 
abnormalities in medical images. The study aimed to assist medical practitioners in visualizing the shape, size, and 
orientation of tumors, with only the tumor regions colored in grayscale images. The classification accuracy before and 
after coloring reached 88.5% and 92.4% respectively, indicating a significant quantitative improvement in the post-
coloring stage.  

With the advancement of technology, several image classification systems utilize deep learning methods. The most 
common and straightforward deep learning method used is Convolutional Neural Network (ConvNet) [6]. ConvNet 

Research Article       Open Access (CC–BY-SA) 

Abstract  

Forest fire is a significant issue, especially for tropical countries like Indonesia. One of the impacts of forest fires is 

environmental pollution and damage, such as damage to flora and fauna, water, and soil. Fire detection technology is 

crucial as a preventive measure before the spread or expansion of fire points. Several forest fire detection systems have 

been developed by various research studies, with detection targets varying. Objects in the form of images are usually 
detected using the RGB color filtering method, but this method still results in false detections in image processing. 

Therefore, a classification model is built to detect fire and smoke in images using the Convolutional Neural Network 

(ConvNet) algorithm. In the development of the ConvNet model, a comparison of models is also conducted to assess 

the influence of Hyperparameter Tuning and Callbacks in optimizing the model's classification performance. The 
research results indicate that out of the six comparison scenarios created, the best model is obtained with 90% training 

data and 10% testing data, which is also optimized with Hyperparameter Tuning and Callbacks, with a Validation 

Accuracy of 98.18% and Validation Loss of 4.97%. This model is then implemented in the interface system.  

 

 

 

https://doi.org/10.33096/ilkom.v1xix.xxx.x-x
https://jurnal.fikom.umi.ac.id/index.php/ILKOM/article/view/1455


E-ISSN 2548-7779 ILKOM Jurnal Ilmiah Vol. 16, No. 1, April 2024, pp.46-58 47

  

 

 

Suriyani, et. al. (Optimizing a Fire and Smoke Detection System Model with Hyperparameter Tuning and Callback on Forest 

Fire Images Using ConvNet Algorithm) 

is a method capable of classifying data in the form of images. It has replaced traditional manual feature extraction and 
has become the primary method for image processing [7]. ConvNet can automatically learn a series of unique features 
for a given task [8]. As of now, ConvNet is primarily used in image classification [9].  

Previous research utilized Back Propagation Artificial Neural Network (BP-ANN) for predicting forest fire using 
image data as presented in [10]. BP-ANN is a computational algorithm that mimics the functioning of human nerve 
cells consisting of interconnected neurons in a network. The core of this learning algorithm is to adjust the weight 
values in response to errors. Weight changes are intended to minimize the network's error count, thereby achieving 
the desired output. Another study by [11], proposed a model for detecting and classifying new lung nodules using a 
one-stage detector called "I3DR-Net." The model was designed to prevent misinterpretation, especially in ambiguous 
anatomical structures resembling lung nodules, such as lymph node enlargement, which can result in decreased 
sensitivity and accuracy in detecting malignant lung nodules and delays in diagnosis, proven to have fatal 
consequences for patients.  

In the conducted research, an optimization model was developed for a fire and smoke detection system using an 
images obtained from Kaggle. An image is a representation, similarity, or imitation of an object, which serves as the 
output of a data recording system that can be optical, such as a photo, analog, video signals like those on a television 
monitor, or digital, which can be directly stored on a storage medium. The system was built using the ConvNet 
algorithm and optimized the model with hyperparameter tuning and callbacks to obtain more accurate results.  

ConvNet is a layered learning architecture capable of automatically extracting relevant features using hierarchical 
convolutional layers, without requiring significant human interaction or expert knowledge. These features are then 
fed into several fully connected layers in a chain-like fashion to accomplish the classification task [12]. Neural 
Network algorithms are the most suitable and effective for Image Classification cases because they excel in speed and 
performance while prioritizing accuracy in predictions, with resulting accuracies approaching perfection, at 98.61%. 
ConvNet also has the advantage of autonomously performing feature learning processes from images, as opposed to 
feature extraction, which requires obtaining features from images before classification. 

Model optimization is carried out with hyperparameters because evaluation results show that the performance of 
the Neural Network model with hyperparameter optimization is better than the Neural Network model using default 
hyperparameters. The Neural Network model with default hyperparameters resulted in an accuracy of 81.38% and 
experienced overfitting. With the continuous advancement of artificial intelligence technology, various 
hyperparameter optimization algorithms have emerged, promising the potential to build more accurate machine 
learning models. Hyperparameter tuning is the process of finding the optimal hyperparameter configuration. 
Meanwhile, callback functions are used to ensure that the stored model is the one with the least validation loss [13]. 

With a system that detects fire and smoke in forest fire images, it is expected to assist the community in obtaining 
more accurate information about forest fires based on the acquired images.  

Method  

 ConvNet was first used in the context of processing single digital images with the primary goal of classifying these 
images, where the considered information is the spatial relationship between pixels [14]. This system is built using the 
ConvNet algorithm and optimizing the model with hyperparameter tuning and callbacks to obtain more accurate 
results. Initially, a dataset consisting of 2,200 image data points was collected, comprising 1,100 images labeled as 
fire and 1,100 images labeled as smoke from forest fires obtained from Kaggle. The image data used in this research 
is in JPG (Joint Photographic Group) format. The training data is set to 80% of the dataset, comprising a total of 1,760 
images, and the testing data is set to 20% of the dataset, comprising a total of 440 images.  

 After collecting the dataset, preprocessing is performed which includes resizing to standardize the pixels in each 
image and splitting the data into 80% for training and 20% for validation. Then, Hyperparameter Tuning and Callback 
are configured, followed by training the model using the ConvNet algorithm. After the training process is complete, 
accuracy is measured using a confusion matrix to obtain the accuracy results. If the model achieves good accuracy, it 
will be saved. However, if the model's accuracy is not satisfactory, the training process will be repeated by adjusting 
the Hyperparameters again.  

 Next, is applied to a system that can be used for classification. The classification process in the system begins with 
pre-processing the testing data, which involves resizing. The image processing optimization method with CNN uses 
the default standard size of 256×256 [15], [16], [17], [18]. After pre-processing, the data will be predicted or classified 
by the ConvNet model that has been created. Then, the output or final result will be the classification result, indicating 
whether the image contains fire or smoke. These steps can be seen in Figure 1. 
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Figure 1. Research Stages  

 The ConvNet algorithm consists of 2 parts: feature extraction and classification [19]. The first stage of ConvNet is 
the convolution stage. In the convolution stage, a kernel of a certain size is used for computation. The number of 
kernels used depends on the number of features produced. Then, it proceeds to the activation function, typically using 
the ReLU (Rectifier Linear Unit) activation function. After exiting the activation function process, it undergoes the 
pooling process. This process is repeated several times until an adequate feature map is obtained to proceed to the fully 
connected neural network, and from the fully connected network, the output class is obtained. 

A. Convolution layer 

 Convolution is a process to obtain pixels based on their values and those of their neighbors by involving a matrix 
called a kernel, which represents weighting. Convolution operation is an operation on two real-valued argument 
functions. It is common to combine the Convolution layer with pooling and sampling operations [20]. The convolution 
operation applies the output function as the Feature Map of the input image. These input and output can be seen as two 
real-valued arguments. The convolution operation can be expressed as follows:  

𝑆(𝑡)  =  (𝑥 ∗ 𝑡) (𝑡)  =  ∑ 𝑥(𝛼)  ∗  𝑤(𝑡 − 𝛼) ∞ 𝛼 = −∞  (1) 

Where 𝑆(𝑡) represents the function resulting from the convolution operation, 𝑥 is input and 𝑤 is weight (kernel). 

B. Pooling 

 Pooling, or merging, is a process in ConvNet where the input matrix is simplified into a new matrix. In this study, 
the max-pooling method is used in the pooling process to obtain a new matrix of size 2 × 2 by taking the highest value 
from each window. Max pooling layers play a crucial role in combining various low-level features from the 
surroundings while preserving important information while removing unnecessary details [21].  

C. Flattening Layer 

 The last process is Fully-Connected. The output of the final process of the model within the feature extraction layer 
is still in the form of a multi-dimensional array, so it needs to be reshaped or "flatten" into a vector to be used as input 
for the fully-connected layer. Then, the fully-connected layer is added with a dense function, which is a function for 
adding layers to the fully-connected network.  
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D. Accuracy 

After the training process of the ConvNet algorithm model is completed, accuracy is measured using a confusion 
matrix to obtain the accuracy results. If the model achieves good accuracy, it will be saved. Next, it will be applied to 
a system that can be used for classification.  

The result of the confusion matrix calculation process has 4 outputs: accuracy, precision, recall, and error rate. 

Table 1. Confusion Matrix 

Prediction 

Actual 

 Negative Positive 

Negative 𝐴 𝐶 

Positive 𝐵 𝐷 

  

Results and Discussion  

A. Data Collection 

Data collection was carried out by taking a dataset from Kaggle of 2,200 images consisting of 1,100 fire images 

and 1,100 smoke images. 

B. Preprocessing 

In the preprocessing process, the data resizing, augmentation and splitting stages are carried out. This stage is 

carried out before the training process by resizing to equalize the pixels in each image, Augmentation to modify the 

image so that it can recognize different images, and Splitting Data with the first 3 scenarios 70% training data and 

30% testing data, second 80% training data and 20% testing data, thirdly 90% training data and 10% testing data. 

1) Resize Image 

In this stage, the author reduces the size of the images to 256 x 256 pixels. The view of the image resizing 

process can be seen in Figure 2.  

 

Figure 2. Resize Image 

In Figure 2, the image on the left is a picture of smoke. This image is before the image resizing process, 

where the initial size is 800 x 600 pixels. Then, the image on the right is the result of resizing the image to 

256 x 256 pixels. 

2) Image Augmentation 

Augmentation is the process of manipulating or modifying an image, so that the original image in standard 

form is changed in shape and position. Data augmentation aims to enable the machine to learn and recognize 

from various different images while also being utilized to increase the amount of data available.  

 

Figure 3. Augmentasi Image 
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In Figure 3, the result of image augmentation is shown. The image on the left is the original image before 
augmentation. In image augmentation, the original image is processed with various transformations and 
manipulations, resulting in new images with different values but still retaining the same class information. 
Some image augmentation techniques used include: rotating the image by 25 degrees, then shifting the height 
by 10% and the width by 10%, followed by enlarging the image by 20%, and finally flipping the image 
horizontally to create symmetric variations.  

C. Model Training Results 

 

Figure 4. Output of scenario 1 without Hyperparameter Tuning and Callback.  

In Figure 4, which represents the output of the first scenario without using Hyperparameter Tuning and 
Callback, with a data split of 70% for training and 30% for testing, it can be observed that the graph does not 
experience overfitting, where overfitting is a condition where the validation accuracy is higher than the training 
accuracy. In this scenario, the training accuracy is 95.58% and the validation accuracy is 93.94%.  

 

Figure 5. Output of scenario 2 without Hyperparameter Tuning and Callback.  

Figure 5 represents the output of the second scenario without using Hyperparameter Tuning and Callback, with a 
data split of 80% for training and 20% for testing, it can be observed that the graph does not experience overfitting. 
In this scenario, the training accuracy is 96.25% and the validation accuracy is 94.77%  

 

Figure 6. Output of scenario 3 without Hyperparameter Tuning and Callback.  

Figure 6 represents the output of the third scenario without using Hyperparameter Tuning and Callback, with a 
data split of 90% for training and 10% for testing, it can be observed that the graph does not experience overfitting. 
In this scenario, the training accuracy is 96.87% and the validation accuracy is 95.45%.  
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Figure 7. Output of scenario 1 with Hyperparameter Tuning and Callback.  

Figure 7 represents the output of the first scenario with Hyperparameter Tuning and Callback, with a data split of 
70% for training and 30% for testing, it can be observed that the graph does not experience overfitting. In this scenario, 
the training accuracy is 97.99% and the validation accuracy is 97.88%.  

 

Figure 8. Output of scenario 2 with Hyperparameter Tuning and Callback  

Figure 8 represents the output of the second scenario with Hyperparameter Tuning and Callback, with a data split 
of 80% for training and 20% for testing, it can be observed that the graph does not experience overfitting. In this 
scenario, the training accuracy is 98.35% and the validation accuracy is 97.73%.  

 

Figure 9. Output of scenario 3 with Hyperparameter Tuning and Callback.  

Figure 9 represents the output of the third scenario with Hyperparameter Tuning and Callback, with a data split 
of 90% for training and 10% for testing, it can be observed that the graph does not experience overfitting. In this 
scenario, the training accuracy is 98.59% and the validation accuracy is 98.18%.  

Table 2. Results of the model without using Hyperparameter Tuning and Callback 

Training/Testing Training Accuracy Validation Accuracy Training Loss Validation Loss 

 70 30 95.58 93.94 17.23 30.24 

80 20 96.25 94.77 12.49 23.88 

90 10 96.87 95.45 6.55 7.34 

Table 3. Results of the model using Hyperparameter Tuning and Callback 

Training/Testing Training Accuracy Validation Accuracy Training Loss Validation Loss 

 70 30 97,99 97,88 5,14 5,42 

 80 20 98,35 97,73 4.67 5,46 
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 90 10 98,59 98,18 3,93 4,97 

 Based on Tables 2 and 3, it is evident that learning using Hyperparameter Tuning and Callback is better compared 
to those that do not use them. It can be seen in scenario 1 with a 70% training data and 30% testing data split, where 
the Validation Accuracy using Hyperparameter Tuning and Callback is higher compared to those that do not use them. 
From the discussion above, it can also be concluded that among the six scenarios, the best scenario is using 
Hyperparameter Tuning and Callback in scenario 3 because the Validation Accuracy reaches 98.18%, which is the 
highest among all scenarios.  

Table 4. Results of all experiments  

Scenario 

Number: 
Hyperparameter Training Testing 

Training 

Accuracy 

Validation 

Accuracy 

Training 

Loss 

Validation 

Loss 

1 

• Epoch = 75 

• Batch Size = 32 

(default) 

• Optimizer = 

RMSprop 

• Callback = there is 
none  

70% 30% 95.58 93.94 17.23 30.24 

2 

• Epoch = 75 

• Batch Size = 32 

(default) 

• Optimizer = 
RMSprop 

• Callback = there is 

none 

80% 20% 96.25 94.77 12.49 23.88 

3 

• Epoch = 75 

• Batch Size = 32 
(default) 

• Optimizer = 

RMSprop 

• Callback = there is 

none 

90% 10% 96.87 95.45 6.55 7.34 

4 

• Epoch = 75 

• Batch Size = 8 

• Optimizer = Adam  

• Callback = 

ModelCheckpoint  

70% 30% 97.99 97.88 5.14 5.42 

5 

• Epoch = 75 

• Batch Size = 8 

• Optimizer = Adam  

• Callback = 

ModelCheckpoint  

80% 20% 98.35 97.73 4.67 5.46 

6 

• Epoch = 75 

• Batch Size = 8 

• Optimizer = Adam  

• Callback = 

ModelCheckpoint  

90% 10% 98.59 98.18 3.93 4.97 

D. Confusion Matrix 

 The results of accuracy validation using the Confusion Matrix can be seen in Figure 10.  
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Figure 10. Confusion Matrix 

In Figure 10, there are 2 categories, 0 for fire and 1 for smoke. From the figure, it can be seen that there are 98 
correct predictions of smoke and 118 correct predictions of fire. Then, out of 99 smoke predictions, there is 1 false 
detection of smoke, and out of 121 fire predictions, there are 3 false detections of fire (false detection).  

The validation metrics that can be summarized from the output of the Confusion Matrix, along with their 
explanations, are as follows:  

1) Accuracy 

Accuracy measures the level of prediction accuracy of the overall model. The percentage value indicates how 

many correct predictions there are from all classes (fire and smoke).  

Accuracy =  (𝑇𝑃 +  𝑇𝑁 )/Total = (118+98)/(220 )  = 98.1818% 

2) Recall  

Recall measures the ability of the model to classify positive class instances out of all actual positive class 

instances. The percentage value indicates how many of all positive class instances (smoke) are correctly 

predicted as smoke by the model.  

Recall = 
𝑇𝑃

𝑇𝑃+𝑇𝑁
 =   

118

118+3
=  97.5206% 

3) Precision  

Precision measures the accuracy of positive predictions made by the model. The percentage value indicates how 

many of all predicted positive instances (smoke) by the model are actually positive instances (smoke).  

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 =   

118

118+1
=  99.1596% 

4) F1-score  

F1-score helps measure Precision and Recall simultaneously using Harmonic Mean as a replacement for 

Arithmetic Mean. F1-score is often used to obtain a better overview of the model's performance, especially if we 

have an unbalanced number of data in each class. 

F1 Score = 
2(𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
=  

19338,216

196,67
=  98.3282% 

E. ConvNet Architecture  

The input image to the ConvNet model is a 256 × 256 × 3 image. The number 3 represents an image with 3 

channels, including Red, Green, and Blue (RGB). The input image will first undergo convolution and pooling 

processes in the feature learning stage. The design includes three convolution layers. Each convolution has a different 

number of filters and kernel sizes. Then, the feature map from the pooling layer is flattened into a vector. This process 

is commonly referred to as the fully connected layer stage. There are two stages in the ConvNet architecture: Feature 

Learning and Classification. In the Feature Learning stage, features are extracted from the input image data, involving 

processes such as Convolution, followed by activation function filtering like ReLU, and then continuing to the Pooling 

process using Max Pooling. Then, in the Classification stage, information from the features learned during the Feature 

Learning process will be used to determine the classification of the data into a corresponding category or class. The 

Classification stage starts with the Flattening process from the end of the Feature Learning stage, then continues to 
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the Fully Connected Layer, which is also connected to the Output Layer, where the classification process takes place 

by applying an Activation Function. In this model, the Output Layer uses Sigmoid as its Activation Function to classify 

into one of two classes, fire or smoke. The interpretation of each stage can be seen in Figure 11.  

 

Figure 11. ConvNet Architecture 

In Figure 11, the ConvNet architecture consists of: 

a. The first convolutional process uses a kernel size of 3×3 and 3 depths. The convolution process is a 
combination of two different matrices resulting in a new matrix value. Figure 12 shows the convolution 
process with a 3 × 3 kernel size and a stride of 1, where the stride is the displacement of the kernel over the 
input matrix. 

 

Figure 12. Convolution Calculation Process 

After the convolution process, a Rectified Linear Unit (ReLU) activation function is added. This activation 
function aims to transform negative values into zero. The result of this convolution has the same size, which 
is 256x256, because a padding value of 0 was used during the convolution process. 

b. The pooling process involves reducing the size of the matrix using pooling operations. This study employs 
max-pooling to obtain a new matrix size of 2 × 2 by taking the maximum value from each window. The 
output of this process contains the maximum values taken from the convolutional feature map matrix, as 
depicted in Figure 13. 

 

Figure 13. Pooling Process 

c. The second convolutional process continues the results from the first pooling process, with an input matrix 
of size 128 × 128 and a kernel size of 3×3. This second convolutional process also employs the ReLU 
activation function. 

d. The next process is the second pooling process. This process is almost identical to the first pooling process, 
with the difference being that the final output matrix size is 64 × 64.  

e. Next, the third convolutional process continues the results from the second pooling process, with an input 
matrix of size 64 × 64 and a kernel size of 3×3. This third convolutional process also employs the ReLU 
activation function  

f. Next, in the third pooling process, it is nearly identical to the first and second pooling processes, with the 
difference being that the final output matrix size is 32 × 32. 

g. The result of the convolution process yields output feature maps in the form of a multidimensional array. The 
subsequent process involves flattening, which converts the feature maps into a single vector, allowing them 
to be inputted into the fully connected layer for classification purposes. 
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h. Next is the fully connected stage, where a single hidden layer in the Multi-Layer Perceptron (MLP) network 
is employed. In Figure 14, the Flatten operation converts the output from the pooling layer into a vector. 
Before proceeding to the classification process (predicting images), a training process is conducted using 
dropout values. Dropout is a regularization technique in neural networks aimed at randomly selecting and 
temporarily dropping out some neurons during the training process, meaning these neurons are not utilized 
during training. The purpose of this process is to reduce overfitting during training.  

 

Figure 14. Flatten process 

i. The classification process involves utilizing the sigmoid activation function to classify the input into the 
respective targets, including fire and smoke. 

 

Figure 15. Process Classification 

E. Analysis and Data Validation 

 The following is the data analysis conducted by the researchers and the form of data validation used as testing for 
the analysis produced by the authors in this study:  

1) Hyperparameter Tuning and Callback 

In this process, Google Colaboratory is used to create the ConvNet model. The dataset, which has been pre-
processed, is then trained using the following hyperparameter tuning:  

Epoch = 75 

Batch Size = 8 

Activation Function = ReLu dan Sigmoid 

LossFunction = binary_crossentropy 

Optimizer = Adam (0.001 Iniatiate Learning Rate) 

ModelCheckpoint (val_accuracy, mode = max) 

In the model summary, there are 4 convolutional layers followed by pooling layers. After that, the flatten 
process is conducted, which involves learning processes (dense/hidden layers). Following the learning 
processes, classification is performed using the activation function (sigmoid) to obtain the best model.  

2) Training & Testing Model 

At this stage, there are 6 scenarios, including 3 scenarios without using Hyperparameter Tuning and 

Callback, and 3 scenarios that use Hyperparameter Tuning and Callback. The purpose of this stage is to 

compare the accuracy results between those using Hyperparameter Tuning and Callback with those that do not. 

Table 5. Scenarios without Hyperparameter Tuning and Callbacks 

Scenario number Training Testing Batch Size Callback Optimizer 

1 70% 30% 32 (default) Tidak Ada RMSprop 
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2 80% 20% 32 (default) Tidak Ada RMSprop 

3 90% 10% 32 (default) Tidak Ada RMSprop 

Table 6. Scenario with Hyperparameter Tuning and Callback 

Scenario Number Training Testing Batch Size Callback Optimizer 

1 70% 30% 8 Model CheckPoint Adam 

2 80% 20% 8 Model CheckPoint Adam 

3 90% 10% 8 Model CheckPoint Adam 

 

After the training model process and testing were conducted, a curve displaying the training and validation accuracy, 
as well as training and validation loss, was obtained. The architecture of the model used in the training process scenario 
above can be seen in Table 7.  

Table 7. Model ConvNet 

No. Name Size Parameter 

0 Input (256, 256, 3) 0 

1 Conv2d_1 (256, 256, 256) 7168 

2 Batch_normalization_1 (256, 256, 256) 1024 

3 MaxPool_1 (128, 128, 256) 0 

4 Conv2d_2 (128, 128, 128) 295040 

5 Batch_normalization_2 (128, 128, 128) 512 

6 MaxPool_2 (64, 64, 128) 0 

7 Conv2d_3 (64, 64, 64) 73792 

8 Batch_normalization_3 (64, 64, 64) 256 

9 MaxPool_3 (32, 32, 64) 0 

10 Flatten 65536 0 

11 Dense 32 2097184 

12 Batch_normalization_4 32 128 

13 Dropout 32 0 

14 Output 1 33 

Total 2.475.137 

Validation testing of the system was conducted on 10 input data images of fire and 10 input data images of smoke. 

Figure 16 represents one of the validation test results for one input data image of fire and one input data image of 

smoke. 

 

Figure 16. Validation Test Input  

 The output results from the fire and smoke model that have been created are deemed true or valid, meaning that 
each input image yields results consistent with images of fire and smoke.  
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Conclusion  

Based on the conducted research, several model creation scenarios were carried out to compare the effects of 

Hyperparameter Tuning and Callback on optimizing the model's ability in the classification process. Out of the six 

scenarios, consisting of three scenarios without optimization and three scenarios with optimization, it is evident that 

in the three scenarios where Hyperparameter Tuning and Callback optimization were applied, there was an increase 

in the model's accuracy or a decrease in the model's error/loss value, indicating that the optimization had a positive 

impact on the model. 

From the performance measurement of the model using the confusion matrix, the following values were obtained: 

accuracy of 98.18%, recall of 97.52%, precision of 99.15%, and F1-Score of 98.32%. Among the six scenarios, the 

third scenario, which utilized Hyperparameter Tuning and Callback optimization, emerged as the model with the best 

accuracy rate, with a Validation Accuracy value of 98.18% and Validation Loss of 4.97%. 

For further research, it is expected that the addition of various forest fire images will support the classification 

model to perform even better, considering the varying conditions and visual appearances of forests in the field. 
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