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Introduction  

Traffic accidents caused by driver fatigue pose significant challenges to road safety in many countries, including 
the United States and Australia. According to the National Highway Traffic Safety Administration [1]–[6], 
approximately 684 fatigue-related accidents occurred on US highways in 2021 alone. In Victoria, Australia, driver 
fatigue is implicated in 20% of fatal traffic accidents; in Queensland, it contributes to 20-30% of traffic accidents. 
Indonesia National Transportation Safety Committee (KNKT) [7] reported similar findings. Between 2018 and 2022, 
KNKT identified human factors as the primary cause of 36 out of 57 accidents. Their investigations revealed that 
around 80% of accident causes were attributed to driver fatigue, leading to decreased alertness and microsleep 
episodes [8]. Driver attention [5], [9]–[11] can be distracted by various factors, including cell phone use [12]–[14], 
adjusting radio stations, eating, and daydreaming. Additionally, drowsiness from stress or fatigue can slow driver 
reaction times, increasing the likelihood of accidents. Various symptoms can indicate driver drowsiness or 
impairment, with driver facial expressions as a primary indicator [4]. This study aims to evaluate the performance and 
reliability of devices that detect driver facial expressions in various road conditions, particularly during morning, 
afternoon, evening, and nighttime. Facial expressions are a type of nonverbal communication that conveys information 
about an individual's emotional state. Due to their driving behaviors and habits [5], [9], [15]–[17], drivers exhibit 
different driving styles [16], experiences [16], and emotions [13], [18]–[20]. The detection and recognition of human 
emotions remain significant tasks in computer vision (CV) and artificial intelligence (AI) [21]. Driver facial detection 
is a critical technology for road safety and security. Facial detection is easy to implement, cost-effective, and can be 
performed using commonly available cameras [18], [22]–[26]. However, challenges may arise when detecting facial 
features such as hair, glasses, hats, and other accessories due to variations in lighting, facial expressions, and individual 
body postures [27]. While these systems find applications in security, control systems, and others, noise often occurs 
during face detection in digital images [28]. Real-time sleep detection models monitor driver behavior to detect 
moments when drivers feel drowsy [29]–[33]. Object detection systems have achieved a success rate of up to 80% 
[34]. However, these methods require expensive sensors for data processing [35]–[37]. To address these requirements, 
affordable, portable, secure, fast, and accurate systems have been proposed [4]. Successful face detection has been 
achieved within distances of 1-2 meters [28]. A tested system achieved an 82% accuracy in indoor environments and 
a 72.8% positive detection rate in outdoor environments [4]. OpenCV provides highly efficient object detection 
functions based on the Haar cascade Viola-Jones classifier for frontal face detection [5], face recognition using 
Eigenface and Haar in OpenCV [25] and eye detection on the Android platform for comparing closed-eye frequencies 
[38]. The Viola-Jones algorithm consists of four stages: integral image, Haar features, cascade, and AdaBoost [25], 
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[39]. The Haar cascade method is commonly used for face detection due to its efficient image processing and rapid 
identification of facial features. However, the reliability of face detection using the Haar cascade method for driver 
facial detection may be affected by environmental disturbances such as low light [35], shadows [40], or changes in 
lighting conditions [17], [39], [41]–[44]. This algorithm utilizes the AdaBoost method to train the face detector, 
employing a combination of different weak classifiers to form a strong classifier. The advantage of this technique lies 
in its ability to create layered detectors and perform intensive pre-processing in crucial regions. Detection rates using 
this method exceed 95%. This study aims to utilize the Viola-Jones algorithm (Haar Cascade) for driver facial 
detection, focusing on distinguishing between attentive and distracted driver behaviors in various road conditions and 
times. The objective is to produce practical outcomes for wide-ranging applications, especially on cost-effective 
devices with limited resources, thus validating the model's potential to enhance road safety under the complexities and 
uncertainties of real-world driving conditions. 

Method  

The Viola-Jones algorithm, developed by P. Viola and M. Jones in 2001 [45], is a powerful tool for detecting 
driver drowsiness by focusing on the eye region. By utilizing OpenCV's Haar classifier cascades, the algorithm 
efficiently detects both faces and eyes in images [5]. Mathematically,  

𝐹 = ∑𝑤ℎ𝑖𝑡𝑒𝐼(𝑥, 𝑦) − ∑𝑏𝑙𝑎𝑐𝑘𝐼(𝑥, 𝑦) 

where is 𝐼(𝑥, 𝑦) the pixel intensity at location (𝑥, 𝑦) 

(1) 

𝐼𝐼(𝑥, 𝑦) = ∑𝑖=0
𝑥 ∑𝑖=0

𝑦
𝐼(𝑖, 𝑗) (2) 

𝐽 = ∑𝑖=0
𝑛 𝑤𝑖 ∣ ℎ(𝑥𝑖) − 𝑦𝑖 ∣ 

where 𝑤𝑖 is the weights, ℎ(𝑥𝑖) is the weak classifier prediction, and 𝑦𝑖  is the actual label. 

(3) 

This feature-based approach enables direct monitoring of eye state, mouth state, and head pose, providing valuable 
insights into the driver's level of drowsiness [46]. Through a series of stages and the implementation of weak classifiers 
trained with the AdaBoost algorithm, the Viola-Jones algorithm accurately detects faces [47]–[49].  

 

Figure 1. Stages of The Viola-Jones Algorithm 

It facilitates the analysis of driver behaviors and attentiveness (Figure 1). The research methodology employed a 
quantitative approach to detect drivers' faces using an ASUS A416JA laptop and a Raspberry Pi. Data were collected 
through the laptop's webcam and the Raspberry Pi camera module, capturing images and videos under various lighting 
conditions and distances. OpenCV was utilized for image processing and face detection by Phyton. The analysis, 
which was conducted using Google Colab, examined the camera's response to motion over time, driver movement 
behavior, the suitable camera distance for successful face detection, and detection patterns at various light intensities. 
A relational matrix of detected motion, detected face features, and detected faces was analyzed to evaluate the system's 
detection effectiveness. The results aimed to provide insights into the optimal settings for accurate face detection in 
different driving scenarios. 

The installed camera produces clear responses, indicating that the driver's behavior tends to be distracted and lacking 
focus. The driver's head movements reaching a 180-degree angle indicate significant inattentiveness to the road and the 
surrounding situation. The camera can capture the driver's face effectively and can classify whether the driver is 
attentive or not (Figure 2). The camera detected motion within the given time range, specifically from seconds 1 to 6 
(Table 1). 
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Results and Discussion  

    

Figure 2. Camera capture of the driver's attentive face and negligent driver behavior 

Table 1. Camera Response to Detected Motion Over Time 

Time (seconds) Camera Response Motion Detected 

1 Detected Not captured 

2 Detected Not captured 

3 Detected Not captured 

4 Detected Not captured 

5 Detected captured 

6 Detected captured 

Although motion was detected by the camera from seconds 1 to 4, the camera's response was unsuccessful in 
capturing the motion. The camera detected motion but did not capture it for the first four seconds; it successfully 
captured the motion after four seconds (Figure 3). 

 

Figure 3. Camera Response Over Time 

This could be attributed to various factors, such as data processing errors or the camera not recording them. 
However, at seconds 5 and 6, the camera's response successfully captured the detected motion (Figure 3). Table 2, A 
specific distance was the most effective in detecting the driver's face using the camera. The placement of the camera 
and proper distance settings can enhance the success of face detection and provide accurate data for driver behaviour 
analysis.  

Table 2. Driver Movement Behavior and Camera Distance Suitable for Successful Face Detection 

Distance (cm) Face Detected 

10 Not detected 

20 Not detected 

30 Detected 

40 Detected 

50 Detected 

60 Detected 

70 Detected 

80 Not detected 

90 Not detected 

100 Not detected 
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Figure 4, an optimal range between 30 and 70 cm is where the camera consistently detects the driver's face. Beyond 
this optimal range, whether too close (below 30 cm) or too far (above 70 cm), the camera fails to detect the driver's 
face. 

 

Figure 4. Driver Movement Behavior And Camera Distance For Face Detection 

The camera successfully detected the driver's face during the morning and daytime when the light intensity was 
high. However, in the evening, although the driver's face was still detected, the number of detections tended to be lower. 
During the nighttime, the camera could not detect the driver's face due to low light intensity. Thus, light intensity was 
an important factor that affected the camera's ability to detect the driver's face (Table 3). 

Table 3. Detection Patterns at Various Light Intensities 

Time Days Face Detected Min (Lux) Average (Lux) Max (Lux) 

Morning Yes 3276 3655 4034 

Afternoon Yes 8775 9765 10755 

Afternoon Yes 450 490 530 

Evening No 274 282 290 

Although movements were detected at certain seconds, the camera's response failed to capture those movements. It 
was also observed that the camera did not always successfully detect the driver's face at a specific distance. The 
importance of optimal camera settings and conditions for generating accurate responses and detections was evident. 
Improvements in data processing or camera settings may be necessary to enhance the response to detected movements.  

 

 

Figure 4. Relation Matrix Detected Motion, Detected Face Features, and Detected Face 

The significance of the appropriate distance for the camera to consistently detect the driver's face was highlighted. 
In both cases, understanding the factors that influence the camera's response, such as settings, data processing, light 
intensity, and distance, is crucial to ensure good performance and accurate results from the camera (Figure 4). The 
relationship matrix revealed the correlation between detected motion, detected face features, and detected faces. The 
data showed that motion detection was consistent in data sets 0 through 6, while face features were detected only in 
specific instances (data sets 3 and 5). The face itself was detected in data sets 3 and 6. However, no detections (motion, 
face features, or faces) occurred in data sets 7 through 9. These findings indicated that while motion detection was 
reliable, it did not always lead to the detection of face features or the face itself. This underscored the need for optimized 
detection algorithms and conditions to ensure that detected motion consistently resulted in accurate face detection. 
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Conclusion  

In conclusion, this research revealed that the effectiveness of using the Haar cascade method for detecting driver 
facial features is influenced significantly by environmental factors such as low light, shadows, and variations in 
lighting conditions. By employing the AdaBoost algorithm, the system achieved a robust detection rate exceeding 
95%. The study also utilized the Viola-Jones algorithm (Haar Cascade) to distinguish between different levels of 
driver attentiveness across various road and time conditions. Images and videos were successfully captured using an 
ASUS A416JA laptop and Raspberry Pi under different lighting and distances. Motion detection consistently operated 
from seconds 0 to 6, while optimal facial detection primarily occurred during seconds 5 and 6, specifically within 
distances ranging from 30 cm to 70 cm. However, performance declined noticeably outside of this range, especially 
in low light situations such as nighttime. The study underscored the necessity for refining algorithms to ensure 
consistent facial feature detection. Future research should concentrate on enhancing detection algorithms to effectively 
manage diverse environmental conditions, refining data processing and camera calibration to enhance accuracy, 
particularly in low-light settings. Validating these systems on cost-effective devices would demonstrate their potential 
to enhance road safety. Moreover, integrating advanced machine learning techniques could further elevate the 
precision and dependability of driver behavior analysis. 
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