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Introduction 

Multivariate time series analysis is a statistical technique used to examine data collected at different time points 

[1]. Time series can be classified into two categories: univariate, which involves measurements based on a single 

property, and multivariate, which consists of a sequence of measurements based on multiple connected qualities [2]. 

Multivariate time series analysis is extensively employed in diverse domains, including healthcare [3], economics [4], 

and other sciences [5]. Nevertheless, the analysis of multivariate time series data is intricate because of the interaction 

among the features. 

Deep learning has emerged as a viable method for tackling the intricacies of analyzing multivariate time series 

data. Deep learning is a machine learning subfield that uses neural networks with multiple layers and parameters to 

explore and understand intricate data [6]. Several advanced deep-learning models have been created to analyze time 

series data. These models include Recurrent Neural Networks (RNN) [7], Convolutional Neural Networks (CNN) [8], 

LSTM [9], Gated Recurrent Units (GRU) [10], and Bidirectional LSTM (Bi-LSTM) [11]. 

Research Article       Open Access (CC–BY-SA) 

Abstract  

The primary objective of this study is to analyze multivariate time series data by employing the Long Short-Term Memory 

(LSTM) model. Deep learning models often face issues when dealing with multivariate time series data, which is defined by 

several variables that have diverse value ranges. These challenges arise owing to the potential biases present in the data. In order 

to tackle this issue, it is crucial to employ normalization techniques such as min-max and z-score to guarantee that the qualities 

are standardized and can be compared effectively. This study assesses the effectiveness of the LSTM model by applying two 

normalizing techniques in five distinct attribute selection scenarios. The aim of this study is to ascertain the normalization strategy 

that produces the most precise outcomes when employed in the LSTM model for the analysis of multivariate time series. The 

evaluation measures employed in this study comprise Mean Absolute Percentage Error (MAPE), Root Mean Square Error 

(RMSE), and R-Squared (R2). The results suggest that the min-max normalization method regularly yields superior outcomes in 

comparison to the z-score method. Min-max normalization specifically resulted in a decreased MAPE and RMSE, as well as an 

increased R2 value. These improvements indicate enhanced accuracy and performance of the model. This paper makes a 

significant contribution by doing a thorough comparison analysis of normalizing procedures. It offers vital insights for researchers 

and practitioners in choosing suitable preprocessing strategies to improve the performance of deep learning models. The study's 

findings underscore the importance of selecting the appropriate normalization strategy to enhance the precision and dependability 

of multivariate time series predictions using LSTM models. To summarize, the results indicate that min-max normalization is 

superior to z-score normalization for this particular use case. This provides a useful suggestion for further studies and practical 

applications in the field. This study emphasizes the significance of normalization in analyzing multivariate time series and 

contributes to the larger comprehension of data preprocessing in deep learning models. 

https://jurnal.fikom.umi.ac.id/index.php/ILKOM/article/view/1455
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Although these models have succeeded, they each have their constraints. For example, Recurrent Neural Networks 

(RNNs) frequently encounter the vanishing gradient problem issue, making it challenging to train long-term 

dependencies [12] effectively. CNNs, although proficient in capturing localized patterns, may experience difficulties 

handling the inherent temporal dependencies present in time series data. LSTM and GRU models, despite being 

specifically developed to tackle the problem of vanishing gradients, can be computationally demanding and necessitate 

significant fine-tuning to attain optimal performance  [13]. Bi-LSTM models increase complexity and computational 

expense because they are bidirectional. 

The broad spectrum of attribute values is an obstacle in analyzing multivariate time series data. Deep learning 

models may exhibit bias and receive poor performance when presented with varying value ranges [14]. Thus, 

normalization is essential to standardize the value ranges of these characteristics. Normalization in the context of 

multivariate time series analysis involves transforming the value ranges of characteristics into uniform intervals. This 

allows deep learning models to treat these qualities proportionally [15]. Multiple normalizing techniques exist, such 

as min-max normalization and z-score normalization. Choosing the correct normalization technique is vital for the 

deep learning model to achieve the best outcomes in data analysis. 

Nevertheless, previous studies have predominantly concentrated on the utilization of normalization techniques for 

univariate time series or broader machine learning endeavors [16]−[20], leaving little room for investigating their 

precise effects on multivariate time series data within deep learning frameworks. In addition, although min-max and 

z-score normalization strategies are commonly employed, a dearth of comprehensive comparison studies precisely 

assess their effectiveness in the context of multivariate time series data employing LSTM models. 

This study aims to assess the effectiveness of the LSTM model in evaluating multivariate time series data by 

utilizing various normalizing techniques. The main goal is to ascertain the optimal normalization technique, either 

min-max or z-score, to boost the performance of the LSTM model. This study aims to evaluate the precision of the 

model by utilizing measures such as MAPE, RMSE, and R2. The uniqueness of this research resides in its comparative 

examination of normalization strategies, specifically in the setting of multivariate time series data using the LSTM 

model. It offers valuable insights into which normalization method produces superior performance and accuracy. 

This paper enhances the field of multivariate time series analysis and deep learning by: 

1. Conducting a comprehensive comparison investigation of the min-max and z-score normalization techniques 

when applied to the LSTM model. 

2. This study aims to illustrate the influence of various normalization strategies on the performance and accuracy 

of the LSTM model while dealing with multivariate time series data. 

3. This paper provides practical insights and advice for researchers and practitioners regarding selecting suitable 

normalization approaches to enhance the performance of deep learning models in analyzing time series data. 

4. This study aims to improve the understanding of how normalization impacts the performance of LSTM models, 

making a valuable contribution to data preprocessing and model optimization in deep learning. 

The organization of this article is structured as follows: Section 2 provides a comprehensive description of the 

technique used in this research. It includes information on the data collection procedure, the preprocessing processes 

used, the normalization methods applied, and the development of the LSTM model. Section 3 analyzes the data, 

explaining how the LSTM model performed when alternative normalizing strategies were used. Section 4 summarizes 

the main discoveries and offers suggestions for future study paths. 

Method  

This study utilizes the Cross-Industry Standard Process for Data Mining (CRISP-DM) approach, a widely 

acknowledged standard for data mining projects in many sectors [21]. The CRISP-DM framework consists of six steps 

(Figure 1): Business Understanding, Data Understanding, Data Preparation, Modeling, Evaluation, and Deployment 

[22]. Providing a methodical and comprehensive approach to the investigation is essential at every stage.  

 

Figure 1. CRISP-DM research flow. 
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A. Business Understanding 

The main objective of conducting Business Understanding is to understand the research's aim [23] comprehensively. 

When examining multivariate time series using deep learning models, it is crucial to consider the state of the data being 

utilized [24]. The main objective of this research is to assess the efficacy of various normalization techniques, 

specifically min-max, and z-score, in enhancing the performance of the LSTM model for analyzing multivariate time 

series data. This requires comprehending the influence of different normalizing procedures on the accuracy and 

resilience of the model. It is crucial to address the diverse ranges of attribute values in multivariate time series data to 

improve the predictive capabilities of a model. 

In multivariate time series data, attributes often have different value ranges, leading to potential biases in model 

training [25]. Normalization methods mitigate these biases by scaling the attributes to comparable ranges. The study 

aims to determine which normalization technique, min-max or z-score, provides better results regarding MAPE, RMSE, 

and R2 metrics. This understanding will guide the selection of appropriate preprocessing methods for enhancing deep 

learning model performance in real-world applications. 

B. Data Understanding 

The dataset utilized in this study is obtained from Kaggle, specifically named "Hourly Energy Demand Time Series 

Forecast," including the timeframe from January 2015 to December 2018. The dataset consists of 35,064 instances and 

28 attributes, all of which are of the float data type. The desired attribute is "Total load actual." The dataset includes a 

variety of attributes, such as different types of energy generation (biomass, fossil fuels, hydro, solar, etc.), energy 

forecasts, and actual loads. A thorough understanding of the dataset is crucial for effective preprocessing and model 

training. Details of each attribute are in Table 1. 

Table 1. Dataset Attribute Details 

No Attributes Description (min, max) Correlation 

1 Generation of biomass (0, 592) 0.08329 

2 Generation of fossil brown coal/lignite (0, 999) 0.28046 

3 Generation of fossil coal/derived gas (0) NaN 

4 Generation of fossil gas (0, 20034) 0.54891 

5 Generation of fossil hard coal (0, 8359) 0.39656 

6 Generation of fossil oil (0, 449) 0.49709 

7 Generation of fossil oil shale (0) NaN 

8 Generation of fossil peat (0) NaN 

9 Geothermal gemeration (0) NaN 

10 Generation hydro-pumped storage aggregated NaN NaN 

11 Generation hydro-pumped storage consumption (0, 4523) -0.56281 

12 Generation hydro run-off river and poundage (0, 2000) 0.11857 

13 Generation of hydro water reservoir (0, 9728) 0.47948 

14 Generation marine (0) NaN 

15 Generation nuclear (0, 7117) 0.08566 

16 Generation other (0, 106) 0.10069 

17 Generation of other renewables (0, 119) 0.18171 

18 Generation solar (0, 5792) 0.39619 

19 Generation waste (0, 357) 0.07731 

20 Offshore wind generation (0) NaN 

21 Onshore wind generation (0, 17436) 0.04008 

22 Forecast solar day ahead (0, 5836) 0.40436 

23 Forecast wind offshore day ahead NaN NaN 

24 Forecast wind onshore day ahead (247, 17430) 0.03760 

25 Total load forecast (18105, 41390) 0.99513 

26 Total load actual (18041, 41015) 1.0000 
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No Attributes Description (min, max) Correlation 

27 Price day ahead (2.06, 98.69) 0.47389 

28 Actual price (9.33, 99.95) 0.43613 

Initial data exploration involves identifying missing values, understanding the distribution of each attribute, and 

examining the relationships between attributes. This step ensures that the dataset is suitable for analysis and helps design 

appropriate preprocessing strategies. By gaining insights into the data, researchers can make informed decisions about 

handling missing values, selecting relevant attributes, and applying suitable normalization techniques. 

C. Data Preparation 

Data preparation is an essential stage in our study, encompassing various critical procedures to guarantee that the 

dataset is prepared for analysis and model training [26]. One of the initial tasks in data preparation involves addressing 

missing values, which are frequently encountered in extensive datasets and can substantially impact the performance 

of models [27]. This study addresses missing data with the deletion approach, which removes rows or columns 

containing missing values [28]. Two parameters, namely Generation hydro pumped storage aggregated and Forecast 

wind offshore day ahead, are removed from the analysis because of significant missing data. This decreases the number 

of attributes from 28 to 26, guaranteeing a more dependable dataset for following procedures. 

Normalization is a crucial step in data preparation that focuses on normalizing the value ranges of attributes. This 

study applies two normalizing techniques: min-max normalization and z-score normalization. Min-max normalization 

is a data scaling technique that transforms the data to a specific range, usually between 0 and 1 [29]. This is achieved 

by applying the method mentioned in (1). This approach guarantees that all attribute values are confined to a consistent 

range, enabling equitable comparison and analysis  [30]. Alternatively, z-score normalization adjusts the data with an 

average value of 0 and a standard deviation of 1 [31]. This is achieved by applying the procedure mentioned in (2). This 

method aids in aligning the data and standardizing the distribution, rendering it appropriate for models sensitive to the 

magnitude of input features. Table 2 displays the outcomes of applying min-max and z-score normalization techniques 

to the property called Total load actual. 

𝑥′ =
(𝑥 − 𝑥𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛)
 (1) 

𝑥′ =
𝑥 − 𝜇

𝜎
 (2) 

Table 2. Normalization Results 

Actual Value Min-max Normalization Value Z-score Normalization Value  

25385 0.319666 -0.723934 

24382 0.276008 -0.943172 

... ... ... 

29735 0.509010 0.226902 

28071 0.436580 -0.136820 

Once the data has been normalized, attribute selection is carried out to choose the most pertinent characteristics for 

the LSTM model. The study evaluates five different attribute selection scenarios to identify the most effective attribute 

set: utilizing all attributes, excluding attributes with NaN or negative correlations, selecting the top 5 attributes based 

on correlation with the target, selecting the top 3 attributes based on correlation with the target, and utilizing only the 

target attribute. Correlation analysis evaluates the connection between the target attribute and other aspects, guiding the 

selecting attributes. Reducing the dimensionality of the data is crucial to enhancing the efficiency and effectiveness of 

the model by prioritizing the most influential attributes. 

D. Modeling 

The modeling phase entails constructing and refining the LSTM model to evaluate multivariate time series data. 

The LSTM model is chosen due to its capacity to manage sequential data with extended-term relationships, rendering 

it appropriate for time series analysis. The LSTM model's design comprises multiple hyperparameters that must be 

tuned to attain optimal performance  [32]. 
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Hyperparameter tuning is performed by the grid search technique, which methodically investigates all potential 

combinations of provided hyperparameters to identify the optimal set [33]. The hyperparameters examined in this study 

encompass batch size, epoch count, hidden layer count, neuron count, loss function, and optimizer [34]. The grid search 

examines the values listed in Table 3 [35]. 

Table 3. Grid Search Hyperparameter Tuning 

Parameters Search Space Results 

Batch Size '100', '1000' 100 

Epoch '50', '100' 50 

Hidden Layer '2', '5', '10' 2 

Loss Function 'MSE', 'MAE', 'huberloss' MSE 

Neuron '32', '64' 32 

Optimizer 'Adam', 'Rmsprop' Rmsprop 

The LSTM model is trained and evaluated using a data split ratio of 70:30. Consequently, 70% of the data is 

allocated for training the model, while the remaining 30% is reserved for evaluating its performance. The training entails 

inputting the normalized and preprocessed data into the LSTM model and iteratively changing the weights and biases 

via backpropagation to minimize the loss function. 

After training the model, its performance is assessed using the testing dataset. The model's performance is evaluated 

using assessment measures such as MAPE, RMSE, and R2. MAPE quantifies the precision of the model's forecasts, 

RMSE denotes the magnitude of the model's prediction discrepancy, and R2 gauges the extent to which the independent 

variables can account for the variability in the dependent variable. 

The study attempts to discover the most effective normalization strategy, either min-max or z-score, in improving 

the performance of the LSTM model through the modeling process. An analysis of several attribute selection situations 

and hyperparameter combinations is conducted to determine the ideal configuration for precise and resilient time-series 

predictions. This stage converts the prepared data into practical insights and verifies the model's ability to make accurate 

predictions. 

E. Evaluation 

The assessment phase entails analyzing the performance of the LSTM model by utilizing the testing dataset to 

ascertain the efficacy of the normalization procedures, namely min-max, and z-score. The evaluation centers around 

three primary metrics: MAPE, RMSE, and R2 [36]. The MAPE quantifies the precision of the model's forecasts by 

representing the prediction discrepancies as a % of the actual values. This metric demonstrates the model's performance 

over various data ranges, as shown in (3). RMSE, however, measures the model's prediction error by using the square 

root of the average of the squared differences between the predicted and actual values. This makes it more responsive 

to significant mistakes, as shown in (4). Finally, R2 calculates the amount of variance in the dependent variable that 

can be predicted by the independent variables, providing information about the model's ability to explain the data, as 

shown in (5). 

𝑀𝐴𝑃𝐸 =
100%

𝑁
∑ |

𝑦𝑖 −  𝑦̂𝑖

𝑦𝑖
|

𝑁

𝑖=1

 (3) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑁

𝑖=1

 (4) 

𝑅2 =
∑ (𝑦𝑖 − 𝑦̅)(𝑦̂𝑖 − 𝑦̅̂)𝑁

𝑖=1

√∑ (𝑦𝑖 − 𝑦̅)2𝑁
𝑖=1  √∑ (𝑦̂𝑖 − 𝑦̅̂)2𝑁

𝑖=1

 
(5) 

The LSTM model's performance is compared using min-max and z-score normalization across five attribute 

selection scenarios. These scenarios include using all attributes, excluding attributes with NaN or negative correlations, 

selecting the top 5 attributes based on correlation with the target, selecting the top 3 attributes based on correlation with 

the target, and using only the target attribute. The study seeks to determine the best mix of features and normalization 
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approach that produces the most precise and dependable predictions by analyzing various scenarios. The findings are 

displayed in comprehensive tables and graphs, emphasizing the disparities in model efficacy across each situation. This 

thorough assessment offers valuable insights into the influence of normalization techniques on the LSTM model's 

capacity to handle multivariate time series data. It guides future research and practical applications in selecting the most 

efficient preprocessing strategies for time series analysis. 

F. Deployment 

In the last stage, the results are reported, and the performance of the LSTM model is compared using the min-max 

and z-score normalization methods. The results are displayed using graphs and tables to demonstrate the efficacy of 

each normalizing procedure. 

Furthermore, the paper offers practical suggestions derived from the findings, assisting researchers and practitioners 

in choosing the suitable normalization technique for their particular applications. This deployment phase aims to 

successfully communicate and use the insights gained from the research in real-world circumstances to improve the 

performance of LSTM models in multivariate time series analysis. 

The method section offers a thorough and organized way to assess normalization procedures' influence on the 

effectiveness of LSTM models in analyzing multivariate time series. 

Results and Discussion  

This section provides the findings of the comparison analysis conducted on the Min-Max and Z-Score 

normalization strategies when applied to the LSTM model for multivariate time series data. The evaluation criteria 

consist of MAPE, RMSE (Root Mean Square Error), and R2 (Coefficient of Determination). The evaluation is 

performed in five distinct attribute selection scenarios: utilizing all attributes, excluding attributes with NaN or 

negative correlations, selecting the top 5 attributes based on correlation with the target, selecting the top 3 attributes 

based on correlation with the target, and utilizing only the target attribute. The findings are depicted using bar charts 

for each performance parameter. The evaluation value is derived by calculating the mean values of MAPE, RMSE, 

and R2 from 5 trials. Figures 2 to 4 display the MAPE, RMSE, and R2 values for both normalizing strategies in 

various settings. 

Figure 2 demonstrates that the Min-Max normalization consistently yields lower MAPE values than Z-Score 

normalization in all cases. The Min-Max normalization method obtains the lowest MAPE of 3.877% in the scenarios 

when all attributes and the top 5 attributes are considered. In contrast, Z-Score normalization yields larger MAPE 

values, with the most outstanding value being 9.1743% in the scenario, including the top 3 qualities. 

As illustrated in Figure 3, the RMSE values are significantly lower for Min-Max normalization compared to Z-

Score normalization. The best RMSE achieved with Min-Max normalization is 0.0624, observed in the scenarios with 

all attributes and without NaN or negative attributes. Z-Score normalization, however, results in much higher RMSE 

values, with the highest being 0.7660 in the top 3 attributes scenario. 

 

Figure 2. Comparison of MAPE by Different Normalization Techniques Across Scenarios. 
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Figure 3. Comparison of RMSE by Different Normalization Techniques Across Scenarios. 

 

Figure 4. Comparison of R2 by Different Normalization Techniques Across Scenarios. 

 The R2 values indicate that Min-Max normalization leads to higher R2 values, indicating better model performance 

and a higher proportion of variance explained by the model from Figure 4. The highest R2 value for Min-Max 

normalization is 0.9021 in the scenario with all attributes. Z-Score normalization consistently shows lower R2 values, 

with the lowest being 0.4126 in the top 3 attributes scenario. 

The comparative analysis demonstrates that Min-Max normalization outperforms Z-Score normalization in MAPE, 

RMSE, and R2 across all tested scenarios. Specifically, Min-Max normalization results in lower errors (MAPE and 

RMSE) and higher R2 values, which indicate a more accurate and reliable model performance. The higher efficacy of 

Min-Max normalization can be ascribed to its capacity to rescale data within a predetermined range, hence permitting 

enhanced learning and generalization by the LSTM model. This is particularly crucial for time series data with varying 

ranges of attributes, as Min-Max normalization ensures that all attributes are treated proportionally. 

These findings are consistent with prior research. An example is a study on predicting water levels in waterfalls in 

Malaysia, which demonstrated that models using Min-Max normalization yielded superior RMSE compared to those 

using Z-Score normalization [37]. Another study revealed that Min-Max normalization provided lower error values 

than Z-Score normalization in predicting the Nepal stock exchange [38]. However, there are studies with results that 

differ from these findings. 

An investigation on forecasting characteristics of Coal Fired Power Plants (PLTU) found that models utilizing Z-

Score normalization yielded a lower MAPE compared to models using Min-Max normalization [39]. The divergent 
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outcomes may be attributed to the distinct attributes of the examined data. The accuracy of forecasts in practical 

applications, such as energy demand forecasting or healthcare monitoring, can be considerably influenced by the choice 

of normalization technique. The findings of this work offer valuable insights for researchers and practitioners in 

choosing the suitable normalization technique to improve the efficiency of deep learning models in time series analysis. 

The findings have wide-ranging implications for the more significant Sustainable Development Goals (SDGs) 

framework, including Goal 7: Affordable and Clean Energy. Objective 13: Taking action to address climate change. 

Precise energy demand forecasting can facilitate the incorporation of renewable energy sources, improve grid stability, 

and decrease greenhouse gas emissions by optimizing energy generation and consumption. This study aims to enhance 

sustainable energy practices and reduce the effects of climate change by improving the precision of time series 

predictions by implementing efficient normalization procedures. In the healthcare industry, where complicated 

multivariate time series data is frequently encountered (such as patient monitoring systems), a suitable normalizing 

technique can enhance predictive models for patient outcomes, resulting in improved healthcare delivery and patient 

management. 

This aligns with Sustainable Development Goal 3: Good Health and Well-being, as it aims to guarantee healthy 

lifestyles and enhance well-being for people of all ages. This research has significant implications for economic 

forecasting, as it can provide precise predictions that can be used to make well-informed policy decisions, mitigate 

risks, and improve financial stability. This is in alignment with the Sustainable Development Goals (SDGs). Goal 8 

aims to achieve sustained, inclusive, and sustainable economic growth and promote full and productive employment 

and decent work opportunities. To summarize, this study emphasizes the significance of choosing suitable 

normalization strategies to improve the efficiency of LSTM models in analyzing multivariate time series. 

The results offer practical suggestions for researchers and professionals and emphasize the broader influence of 

precise time series forecasts on attaining sustainable development objectives and enhancing practical applications in 

different industries. Subsequent investigations could delve into integrating additional sophisticated normalizing 

techniques and their impact on other categories of deep learning models, aiming to improve the precision and 

practicality of time series predictions. Conducting tests on different datasets with different characteristics might assist 

in confirming the applicability of these findings. Furthermore, investigating alternative normalization techniques and 

assessing their influence on various deep-learning models could yield a more thorough comprehension of the 

preprocessing effects. 

Conclusion  

This study examines the efficacy of min-max and z-score normalization strategies in improving the performance 

of the LSTM model for analyzing multivariate time series. The results indicate that min-max normalization 

consistently performs better than z-score normalization in different attribute selection circumstances. Min-max 

normalization specifically resulted in lower MAPE, RMSE, and better coefficient of determination (R2), indicating 

an improved level of accuracy and predictive ability for the model. The main contribution of this research is its 

thorough comparative investigation of normalizing strategies implemented on the LSTM model. The work offers 

valuable insights for researchers and practitioners in choosing suitable preprocessing techniques to enhance the 

performance of deep learning models in time series analysis. Moreover, the results emphasize the broader influence 

of precise time series forecasts in attaining Sustainable Development Goals (SDGs), including enhancing energy 

management, healthcare provision, and economic projection. 

Although the results of this study show promise, some limitations need to be considered. Initially, the analysis 

relies on a solitary dataset, potentially constraining the conclusions' applicability. Results may vary depending on the 

properties of different datasets. Furthermore, the study exclusively examines implementing two normalization 

strategies: min-max and z-score. Additional normalizing and preprocessing techniques may be investigated to improve 

model performance further. Finally, although the hyperparameter tuning procedure is thorough, it might still be 

improved by employing more sophisticated optimization techniques to guarantee the optimal model configuration. 

Future research should aim to test the proposed normalizing techniques in a broader range of datasets with various 

characteristics, thus addressing the constraints mentioned to validate the findings. 

Furthermore, investigating alternative normalization techniques and assessing their influence on various deep-

learning models could yield a more thorough comprehension of the preprocessing effects. Advanced techniques for 

optimizing hyperparameters, such as Bayesian optimization or evolutionary algorithms, can be used to improve the 

model's performance further. Furthermore, exploring the incorporation of normalization techniques into other data 

pretreatment procedures, such as feature engineering and dimensionality reduction, may result in more resilient and 
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precise models for analyzing multivariate time series. To summarize, this research highlights the significance of 

choosing suitable normalization strategies to improve the performance of LSTM models in multivariate time series 

analysis. The results offer practical suggestions for enhancing the precision of the model and highlight the substantial 

practical consequences of precise predictions of time series in different industries, thereby contributing to the 

overarching objective of sustainable development. 
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