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Introduction 

Brain tumors are among the diseases with a high fatality rate, making early detection a critical aspect in improving 

patient survival rates. Magnetic Resonance Imaging (MRI) has long been used as a medical imaging technique capable 

of providing high-resolution structural details of the brain, making it a primary tool in brain tumor diagnosis [1], [2]. 

However, manual analysis of MRI results requires a high level of expertise, is time-consuming, and is often prone to 

subjective errors. These limitations drive the need for more accurate and efficient automation solutions, particularly 

through machine learning approaches. In recent years, machine learning methods have demonstrated rapid progress 

in the automatic diagnosis of brain tumors, offering greater speed and consistency compared to manual analysis [3]–

[5]. Nevertheless, key challenges remain in enhancing classification accuracy and the ability of models to handle the 

diversity of complex imaging data. Factors such as image segmentation quality, feature representation, and the 

selection of suitable algorithms play a crucial role in determining the success of these approaches. 

This study proposes a machine learning-based approach leveraging ensemble algorithms such as Random Forest, 

XGBoost, and Stacking [6]–[9]. The U-Net model is frequently employed for MRI image segmentation because of its 

encoder-decoder architecture with skip connections, which integrates high-resolution spatial details from the encoder 

with contextual information from the decoder. This design enhances the accuracy of segmentation tasks and has 

proven effective in various medical imaging applications, including organ and tumor segmentation [10], [11]. Feature 

extraction is performed using HuMoments, which are invariant to rotation, translation, and scale, enabling more 

effective representation of spatial patterns in the images [12], [13]. This method is particularly advantageous in this 

research due to its robustness in capturing the shape and geometric features of brain tumor regions, which often exhibit 

variations in orientation and size across different MRI samples. By providing a compact yet informative numerical 

representation, HuMoments ensure that the extracted features are consistent and reliable for classification tasks, even 
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Abstract 

Brain tumors are highly fatal diseases, making early detection a critical factor in improving patient survival rates. Magnetic 

Resonance Imaging (MRI) has become a primary tool in brain tumor diagnosis; however, manual analysis processes are often 

time-consuming and prone to subjective errors. This study employs a machine learning-based classification model to detect four 

categories of brain tumors—glioma, meningioma, pituitary, and healthy—with high accuracy. The methods include image 

segmentation using the U-Net model, which excels in medical image analysis due to its encoder-decoder architecture with skip 

connections, allowing efficient integration of spatial and contextual information. Features are extracted using HuMoments, known 

for their invariance to rotation, translation, and scale, ensuring robust spatial pattern representation. Data normalization is 

conducted using Robust Scaling and L2 Normalization to address outliers and harmonize feature scales, enhancing model 

performance. The MRI dataset, originally comprising 7,023 images, was augmented to 8,000 images using techniques such as 

rotation, flipping, and contrast adjustments to improve class balance and minimize overfitting. Three ensemble algorithms—

Random Forest, XGBoost, and Stacking—were employed to train the models, with performance evaluation based on accuracy, 

ROC-AUC, F1-score, and confusion matrix. The results demonstrate that Random Forest achieved the best performance with an 

accuracy of 72% and an ROC-AUC of 0.91. This study illustrates the potential of machine learning approaches for automated 

brain tumor diagnosis, with further improvement possible through model optimization and the use of more diverse datasets. 
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when dealing with diverse imaging conditions. Additionally, data normalization is conducted using Robust Scaling 

and L2 Normalization to ensure uniform data scaling [14], which is essential for machine learning and deep learning 

algorithms. Robust Scaling is employed to mitigate the influence of outliers commonly found in MRI image features, 

ensuring that the model focuses on meaningful patterns rather than noise. Meanwhile, L2 Normalization is used to 

harmonize feature magnitudes across the dataset, facilitating better convergence during training and improving the 

stability of machine learning algorithms. 

This research builds upon various prior studies that have made significant contributions to the field of medical data 

analysis. For instance, [15] employed the Naive Bayes algorithm to detect brain tumors from MRI images, although 

the achieved accuracy was limited to approximately 60%. [16] developed an approach that combined segmentation 

techniques and texture-based feature extraction, such as the Gray-Level Co-occurrence Matrix (GLCM), with 

algorithms like KNN, FCM, and K-Means, which proved more efficient for medical image segmentation tasks. 

Meanwhile, [17] compared the performance of various machine learning algorithms, such as Random Forest, 

XGBoost, and Logistic Regression, for cardiovascular disease classification. Their research highlighted the superiority 

of Random Forest in handling high variability in data, making it a reliable choice for similar applications. This study 

aims to address the primary challenges in machine learning-based brain tumor diagnosis by integrating U-Net-based 

segmentation techniques, optimal feature representation through HuMoments, and ensemble algorithms to improve 

classification accuracy. Unlike prior studies, such as [15], which relied on simpler algorithms like Naive Bayes for 

brain tumor detection and achieved limited accuracy (approximately 60%), this research combines U-Net for precise 

segmentation and HuMoments for robust feature extraction. The ensemble learning methods, including Random 

Forest and XGBoost, enhance the classification process, addressing limitations in handling complex patterns and 

diverse datasets. Additionally, previous studies [15] struggled to manage larger and more diverse datasets, as well as 

overlapping features, which often led to unreliable classifications. By incorporating advanced augmentation 

techniques to balance the dataset and ensemble models for better generalization, this study bridges these gaps, 

achieving higher accuracy and robustness for practical clinical applications. The main contribution of this research 

lies in the development of a more reliable and efficient approach to brain tumor diagnosis, which can be broadly 

applied in technology-driven medical analysis systems. 

Method  

A. Research Design 

 

Figure 1. Research Design 
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This study employs a machine learning approach to classify brain MRI images into four categories: glioma, 

healthy, meningioma, and pituitary. The research stages include image segmentation, feature extraction, data 

normalization, model training, and performance evaluation. These processes are designed to ensure accurate results 

by utilizing ensemble algorithms such as Random Forest, XGBoost, and Stacking. The U-Net segmentation model is 

used to isolate relevant brain regions from the MRI image background [11], [18]. The segmentation results are then 

utilized for further analysis using machine learning techniques. 

B. Data Collection 

1. Dataset 

The dataset used in this study was obtained from the public platform Kaggle and consists of 7,023 brain 

MRI images divided into four classes: glioma (1,621 images), healthy (2,000 images), meningioma (1,645 

images), and pituitary (1,757 images). The images in this dataset have consistent resolution, facilitating the 

segmentation and analysis processes. With a relatively balanced distribution across classes, the dataset enables 

machine learning and deep learning models to learn unique patterns for each class without significant bias 

risks. 

The selection of this dataset is based on the variety of tumor types available (glioma, meningioma, pituitary) 

as well as the normal class (healthy), providing a realistic representation for clinical analysis. Additionally, the 

dataset supports research reproducibility as it is publicly accessible through Kaggle. To provide a visual 

overview of the dataset, examples of images from each class glioma, healthy, meningioma, and pituitary are 

presented. These visualizations offer initial insights into the unique visual patterns in each class and assist in 

validating both the segmentation process and further analysis. 

 
Figure 2. Sample of Dataset 

2. Image segmentation 

Image segmentation is a crucial initial step to isolate relevant brain areas from MRI images, particularly for 

detecting tumors with high precision. In this study, the U-Net model was chosen for segmentation due to its 

superior performance in semantic segmentation tasks compared to other methods, such as Fully Convolutional 

Networks (FCN) [19]. The symmetrical encoder-decoder structure of U-Net allows for the integration of high-

resolution spatial information from the encoder with contextual information from the decoder, resulting in more 

accurate segmentation [11], [18], [20], [21]. The choice of U-Net was further motivated by its proven success 

in similar tasks, such as organ segmentation in medical imaging.  

 

Figure 3. U-Net Architecture [18] 

To optimize the segmentation process, the dice loss function was employed, given its capability to handle 

pixel imbalances between the background and the target object, such as tumors, which are typically small in 

proportion to the entire image. The primary goal of segmentation is to separate the brain regions with potential 
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tumors from the image background, thereby enhancing the focus of subsequent analyses. The optimization of 

the U-Net model is performed using the dice loss function, which is formulated as follows. 

𝐷𝑖𝑐𝑒 𝑙𝑜𝑠𝑠 = 1 −
2 ∙ ∑(𝑃 ∙ 𝐺)

∑ 𝑃 + ∑ 𝐺
 (1) 

where 𝑃 represents the predicted pixel probability, and 𝐺 denotes the ground truth. The following are the 

original images and their segmentation results, demonstrating the effectiveness of U-Net in isolating significant 

regions from the background. 

 

Figure 3. Image segmentation 

3. Data Augmentation 

Data augmentation was applied to enhance the diversity of the dataset while minimizing the risk of 

overfitting during model training. The augmentation process involved various transformations, including 

rotation, horizontal and vertical flipping, as well as contrast adjustments, to generate more varied data samples 

[22], [23]. As a result, the number of samples in each class was balanced to 2,000, ensuring an even distribution 

for both training and testing datasets. Data augmentation plays a critical role in this study as it helps mitigate 

the risk of overfitting by providing a more diverse dataset, enabling the model to generalize better to unseen 

data. Without augmentation, the imbalance in the dataset—such as fewer samples in certain classes—could 

lead to biased learning, where the model performs well on dominant classes but poorly on underrepresented 

ones. By generating additional samples through techniques such as rotation, flipping, and contrast adjustment, 

data augmentation ensures that each class is adequately represented during training and testing, which is crucial 

for improving classification performance and robustness, particularly in challenging tasks like brain tumor 

detection. 

4. Feature Extraction 

After segmentation, features were extracted using HuMoments, a technique that numerically represents the 

shape and distribution of objects within an image [24]–[26]. HuMoments were utilized for their ability to 

capture spatial patterns of shapes and distributions in MRI images. Additionally, their invariance to rotation, 

translation, and scale makes them ideal for MRI data, which often exhibit variations in orientation and size 

across subjects. The basic formula for geometric moments 𝑀𝑝𝑞 is: 

𝑀𝑝𝑞 = ∑ ∑ 𝑥𝑝𝑦𝑞𝐼(𝑥, 𝑦)

𝑦𝑥

 (2) 

Where 𝐼(𝑥, 𝑦) represents the pixel intensity at the coordinate 𝑥, 𝑦. Based on these moments, HuMoments are 

computed using non-linear combinations to produce features that are invariant to transformations. This feature 

extraction process enables a compact and informative numerical representation, which is crucial for machine 

learning applications. 

Table 1. Extraction Results  

No H1 H2 H3 H4 H5 H6 H7 Label 

1 0.061531 0.00011 4.33E-05 7.02E-05 1.47E-09 -4.65E-07 3.58E-09 1 

2 0.10655 0.005565 0.00019 6.17E-05 -6.66E-09 -3.56E-06 5.09E-10 1 

… … … … ... … … … … 

         

7998 0.031556 1.41E-05 9.61E-07 3.34E-06 1.56E-12 -1.25E-08 5.78E-12 3 

7999 0.023381 6.03E-05 8.06E-07 1.19E-06 -1.07E-12 -6.87E-09 -4.71E-13 3 
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No H1 H2 H3 H4 H5 H6 H7 Label 

8000 0.062603 0.000192 7.55E-07 4.22E-05 6.55E-11 1.70E-07 2.29E-10 3 

 

5. Normalization 

Normalization is performed to align the feature scales and reduce the impact of outliers. Two methods are 

employed: Robust Scaling and L2 Normalization. 

• Robust Scaling: Robust Scaling is chosen for its ability to handle outliers commonly found in imaging data 

features. The formula is as follows: 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =  
𝑋 − 𝑀𝑒𝑑𝑖𝑎𝑛(𝑋)

𝐼𝑄𝑅(𝑋)
 (3) 

 

• L2 Normalization: L2 Normalization is applied to harmonize the scale across features, enabling algorithms 

such as XGBoost and Random Forest to effectively learn data patterns. The formula is given by: 

𝑋𝑛𝑜𝑟𝑚 =
𝑋

||𝑋||2

, ||𝑋||2 = √∑ 𝑋𝑖
2

𝑛

𝑖=1

 (4) 

The results of the normalization process are visualized using scatter plots. Scatter plots serve as an effective 

tool for understanding data distribution and relationships between features, facilitating the analysis of relevant 

patterns in the dataset. This visualization helps evaluate the success of normalization in aligning feature scales 

and mitigating the influence of outliers. 

 
Figure 4. Scatter Plot 

In the scatter plot visualization below, each point represents an MRI data sample, with colors indicating its 

class (glioma, meningioma, pituitary, or healthy). This scatter plot aids in evaluating the extent to which data 

normalization successfully aligns feature scales and mitigates the influence of outliers. Through this 
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visualization, the distribution patterns across classes and potential overlaps between features can be better 

understood, which is a crucial step in improving the accuracy of machine learning models. 

C. Data Analysis 

The data analysis process in this study involves training machine learning models, validating their performance, 

and evaluating their classification capabilities using various metrics. The following steps outline the analysis process: 

1. Splitting Data 

The dataset was divided into two subsets: 80% for training and 20% for testing, with the division performed 

randomly. This split ensures balanced class distributions in both subsets, enabling the evaluation of the model's 

generalization capability. The training data is used to train the models, while the testing data provides an 

independent evaluation to assess the models' real-world performance. 

2. Training the Models 

Three ensemble algorithms were employed for model training: Random Forest, XGBoost, and Stacking. 

Each algorithm was chosen for its unique strengths in handling complex datasets and its ability to improve 

classification performance: 

• Random Forest: This algorithm leverages multiple decision trees to enhance accuracy and stability [27]–

[29]. It predicts the output class based on the average probabilities from all trees in the forest. Random 

Forest excels in handling high-dimensional data and reducing the risk of overfitting by using a combination 

of multiple decision trees, each trained on random subsets of data and features. This ensemble approach not 

only improves accuracy but also enhances model robustness by averaging the predictions, making it less 

sensitive to noise in the dataset. Moreover, its ability to measure feature importance provides valuable 

insights for understanding which variables contribute most to the classification, defined as: 

𝑃(𝑦 = 𝑐|𝑋) =
1

𝑁
∑ 𝑃𝑖(𝑦 = 𝑐|𝑋)

𝑁

𝑖=1

 (5) 

Where 𝑝𝑖 represents the probability predicted by the 𝑖-th tree. 

• XGBoost: A gradient boosting algorithm that iteratively optimizes a loss function with regularization to 

control model complexity. XGBoost is particularly advantageous for its efficiency and scalability, utilizing 

techniques like parallel processing and tree pruning to reduce computational cost. Its regularization 

features, such as L1 and L2 penalties, prevent overfitting, making it suitable for datasets with high 

variability. Furthermore, XGBoost employs a weighted quantile sketch algorithm for better handling of 

sparse data and uneven distributions, ensuring robust performance in real-world applications. The 

optimization is expressed as: 

𝐿 = ∑ 𝑙(𝑦𝑖 , 𝑦𝑖̂) + ∑ Ω(𝑓𝑘)

𝐾

𝑘=1

𝑛

𝑖=1

 (6) 

Where 𝑙  is the loss function, and Ω(𝑓𝑘) is the regularization term. 

• Stacking: This technique combines predictions from multiple base models (Random Forest, Gradient 

Boosting, and Support Vector Classifier) into a meta-model. The meta-model uses the probability outputs 

from the base models as input features, enabling it to learn patterns and relationships across the individual 

model predictions. The strength of Stacking lies in its ability to exploit the complementary nature of the 

base models; for instance, Random Forest excels at reducing variance through ensemble averaging, 

Gradient Boosting captures complex patterns by iteratively minimizing errors, and Support Vector 

Classifier effectively handles high-dimensional feature spaces. By integrating these diverse capabilities, 

Stacking improves both accuracy and generalization, particularly in complex datasets. This method is 

particularly beneficial when the individual base models exhibit varied strengths and weaknesses, as the 

meta-model synthesizes these insights to produce more reliable and robust predictions. 

3. Evaluation Model Performance 

The trained models were evaluated using three primary metrics: 

• Classification Report: This provides detailed metrics for each class, including precision, recall, F1-score, 

and overall accuracy [30]. These metrics offer insights into the model's performance in predicting each 

class [31]. 

• Confusion Matrix: This presents a detailed view of prediction errors by comparing the actual and predicted 

classes, highlighting areas where the model underperforms. 
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• ROC-AUC: The Receiver Operating Characteristic Area Under the Curve (ROC-AUC) measures the 

model's ability to distinguish between positive and negative classes. It is calculated as the area under the 

ROC curve: 

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅) 𝑑(𝐹𝑃𝑅)
1

0

 (7) 

where 𝑇𝑃𝑅 (True Positive Rate) and 𝐹𝑃𝑅 (False Positive Rate) are defined as: 

 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 𝐹𝑃𝑅 =

𝐹𝑃

𝐹𝑃 + 𝐹𝑁
 (8) 

This structured approach ensures that the models' performance is rigorously assessed, and their strengths 

and limitations are thoroughly analyzed. The evaluation metrics provide comprehensive insights into the 

classification results, aiding in the refinement of the models for improved accuracy and reliability.  

Results and Discussion  

A. Results 

This study evaluates three machine learning models, namely Random Forest, XGBoost, and Stacking, to classify 

brain MRI images into four categories: glioma, meningioma, pituitary, and healthy. The evaluation was conducted 

using metrics such as accuracy, ROC-AUC, F1-score, and confusion matrix to comprehensively assess the 

performance of each model. The performance comparison results are shown in Figure 5.  

 

Figure 5. Comparison of Classification Models 

1. Random Forest 

Table 2. Classification Report of the Random Forest Model 

 Precision Recall F1-score Support 

Glioma 0.70 0.67 0.69 397 

Healthy 0.91 0.87 0.89 400 

Meningioma 0.60 0.59 0.6 399 

Pituitary 0.67 0.72 0.69 399 

     

Accuracy   0.72 1595 

Macro avg 0.72 0.72 0.72 1595 

Weighted avg 0.72 0.72 0.72 1595 

The Random Forest model demonstrated the best performance with an accuracy of 72% and the highest 

ROC-AUC of 0.91, indicating its superior ability to distinguish between categories. The average precision, 

recall, and F1-score for this model are each 0.72. 
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Figure 6. Confusion Matrix for the Random Forest Model 

Confusion matrix indicates that Random Forest has the best prediction distribution, with fewer errors 

compared to the other two models. However, there is a significant misclassification of glioma as meningioma 

(73 cases), suggesting that the features of these two classes share visual similarities. 

2. XGBoost 

Table 3. Classification Report of the XGBoost Model 

 Precision Recall F1-score Support 

Glioma 0.67 0.66 0.67 397 

Healthy 0.83 0.85 0.84 400 

Meningioma 0.62 0.59 0.6 399 

Pituitary 0.66 0.70 0.68 399 

     

Accuracy   0.70 1595 

Macro avg 0.70 0.70 0.70 1595 

Weighted avg 0.70 0.70 0.70 1595 

The XGBoost model achieved an overall accuracy of 70% on the test dataset, demonstrating competitive 

performance across the four classes. For the glioma class, the model recorded a precision of 0.67, a recall of 

0.66, and an F1-score of 0.67, indicating moderate performance in correctly identifying this category. 

 

Figure 7. Confusion Matrix for the XGBoost Model 
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The confusion matrix for XGBoost reveals slightly weaker performance, particularly in the meningioma 

class, where many predictions were incorrectly classified as pituitary. This could be attributed to XGBoost's 

limitations in capturing feature patterns without further parameter optimization. 

3. Stacking 

Table 4. Classification Report of the Stacking Model 

 Precision Recall F1-score Support 

Glioma 0.90 0.88 0.89 397 

Healthy 0.68 0.66 0.67 400 

Meningioma 0.59 0.61 0.60 399 

Pituitary 0.69 0.70 0.69 399 

     

Accuracy   0.72 1595 

Macro avg 0.71 0.71 0.71 1595 

Weighted avg 0.72 0.72 0.72 1595 

The Stacking technique achieved an accuracy comparable to Random Forest (72%), but its significantly 

lower ROC-AUC score of 0.52 highlights the model's limitation in effectively distinguishing between classes. 

Nevertheless, the average precision, recall, and F1-score of 0.71 indicate that the model remains competitive, 

particularly in reducing misclassifications for the glioma and healthy categories. 

 

Figure 8. Confusion Matrix for the XGBoost Model 

The confusion matrix for Stacking, despite achieving accuracy comparable to Random Forest, reveals 

weaknesses in distinguishing classes with similar feature distributions. Specifically, in this research, the 

Stacking model shows significant misclassifications in the meningioma class, where many instances are 

predicted as glioma (73 cases) or pituitary (61 cases). This indicates that the model struggles to differentiate 

meningioma from these two classes, likely due to overlapping texture and intensity patterns. Additionally, the 

healthy class has moderate misclassifications, with some instances being predicted as meningioma (76 cases). 

B. Discussion 

The results of this study indicate that the Random Forest model achieved the best overall performance, particularly 

evidenced by its ROC-AUC score of 0.91, demonstrating a strong ability to distinguish between positive and negative 

classes. The superiority of Random Forest can be attributed to its ensemble nature, which combines predictions from 

multiple decision trees, thereby enhancing the model's stability and accuracy. 

The XGBoost model, although competitive with an accuracy of 70%, requires further optimization of parameters 

such as learning rate and tree depth to maximize its ability to capture inter-class patterns. Optimizing these parameters 

could enable XGBoost to better capture subtle distinctions between overlapping classes, reducing misclassifications. 

For example, a deeper tree depth allows the model to learn more complex hierarchical relationships within the data, 
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while a finely tuned learning rate balances convergence speed and generalization. Research by [32] demonstrated that 

XGBoost can outperform traditional ensemble methods when parameter tuning is conducted effectively, which 

highlights a limitation in this study as exhaustive parameter optimization was not performed. The Stacking technique, 

while achieving an accuracy of 72%, exhibited weaknesses with its low ROC-AUC score of 0.52. A low ROC-AUC 

score indicates that the model struggles to distinguish between positive and negative classes, which can lead to 

inconsistent predictions, particularly for classes with overlapping features such as meningioma and glioma. This 

limitation may reduce its reliability for high-stakes applications such as clinical diagnoses, where clear class separation 

is critical.  

This suggests that the meta-model structure was not effective in combining outputs from the base models. The 

ineffectiveness likely stems from insufficient diversity among the base models, as they may have captured similar 

feature representations, leading to redundant input for the meta-model. Moreover, the limited amount of training data 

for the meta-model might have constrained its ability to generalize effectively. To enhance the performance of the 

Stacking model, future research should consider integrating a more diverse set of base learners, including 

fundamentally different models such as neural networks or probabilistic classifiers. Additionally, optimizing the meta-

model with advanced techniques like regularization or weighted voting schemes could improve its ability to synthesize 

the strengths of the base models. 

Conclusion  

This study successfully demonstrated that a machine learning-based approach combining U-Net image 

segmentation, HuMoments feature extraction, and data normalization can produce a reliable brain tumor classification 

model. The results showed that the Random Forest model delivered the best performance with an accuracy of 72%, 

an ROC-AUC score of 0.91, and an F1-score of 72%. This model excelled in distinguishing various brain tumor 

categories, particularly the healthy category. XGBoost followed with an accuracy of 70% and an ROC-AUC score of 

0.90, while Stacking achieved an accuracy comparable to Random Forest but was limited by an ROC-AUC score of 

0.52. 

These findings support the initial statement in the introduction that integrating machine learning methods can 

improve the efficiency and accuracy of brain tumor diagnosis compared to manual approaches. However, the results 

also indicate that certain categories, such as glioma and meningioma, still frequently experience misclassification, 

highlighting the need for improvements in feature extraction and model parameter adjustments. Future research could 

be developed by incorporating texture- or morphology-based features and using larger and more diverse datasets to 

enhance the model's generalization capability. Additionally, hyperparameter optimization techniques for XGBoost 

and Stacking have the potential to further improve overall performance. With this approach, the resulting model could 

contribute to the development of more accurate and efficient machine learning-based medical diagnostic systems for 

clinical applications. 
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