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Introduction  

Construction sites are inherently hazardous environments due to their dynamic nature. Accidents frequently occur 

as a result of workers' lack of awareness, training, and experience, as well as non-compliance in wearing Personal 

Protective Equipment (PPE), insufficient supervision, and equipment malfunction [1], [2]. Health and safety officers 

are responsible for educating employees about safety protocols and the appropriate selection of workwear. However, 

challenges arise when employees disregard safety regulations.[3], [4], [5]. Personal Protective Equipment (PPE) is 

essential for protecting workers from hazards such as tools, extreme temperatures, and mechanical risks. According 

to guidelines from the Occupational Safety and Health Administration (OSHA), PPE is categorized into five types: 

Head, Upper Body, Hands, Feet, and Full Body. Its selection must be carried out carefully to minimize the risk of 

injury and ensure worker safety.[6], [7], [8], [9] 

The risk of accidents and injuries on construction sites is extremely high [10], With approximately 2.3 million 

workers experiencing work-related accidents or illnesses each year, and more than 6,000 fatal accidents occurring 

every day [11]. Worker safety is a top priority, where the proper use of PPE such as helmets, masks, and vests can 

prevent injuries and fatalities [12], [13], considering that accidents at industrial sites continue to rise and cause 

significant losses for both individuals and organizations [14], [15]. Data on occupational accidents across various 

sectors can be seen in Table 1 [16], [17]. 

Table 1. Occupational Accident Data 

No Sector Total Cases Percentage 

1 Construction 93,748 40% 

2 Mining 58,592 25% 

3 Manufacturing 46,874 20% 

4 Transportation and Agriculture 35,155 15% 

Source: Indonesia Safety School (2024) 

Research Article       Open Access (CC–BY-SA) 

Abstract  

This study addresses the challenges of detecting Personal Protective Equipment (PPE) on construction sites, where work-related 

accidents frequently occur due to the incomplete use of PPE, which can lead to fatal outcomes. The objective of this research is 

to evaluate the use of the YOLOv10 model a lightweight and efficient object detection architecture to detect various PPE items: 

safety helmets, safety vests, gloves, and safety boots. The dataset consists of 1,620 images and was split using two configurations: 

70:20:10 and 80:10:10 for training, validation, and testing sets, respectively. The YOLOv10 model was evaluated using the key 

metric of Mean Average Precision (mAP). The evaluation results demonstrate the model’s capability to accurately detect PPE, 

despite variations in data splitting and the number of epochs used. The findings show that the YOLOv10 algorithm performs very 

well in detecting PPE. On manually processed datasets, the YOLOv10-M model achieved a mAP50 of 97.8% with a 70:20:10 

split and 98.4% with an 80:10:10 split. Meanwhile, on datasets processed using Roboflow, the YOLOv10-B model obtained a 

mAP50 of 85.2% with the 70:20:10 split, and the YOLOv10-S model reached 84.6% on the 80:10:10 split. These findings indicate 

that YOLOv10 delivers a significant performance improvement in PPE detection compared to previous approaches. The 

algorithm’s ability to achieve high mAP50 scores under certain conditions highlights its potential for real-time implementation in 

construction environments, where accurate and timely PPE detection is crucial to reducing future workplace accidents. 

https://jurnal.fikom.umi.ac.id/index.php/ILKOM/article/view/1455


132 ILKOM Jurnal Ilmiah Vol. 17, No. 2, August 2025, pp.131-139 E-ISSN 2548-7779 
  

 

 

Khoiril Umat, et. al. (YOLOv10 for Real-Time Detection of Personal Protective Equipment on Construction Workers) 

You Only Look Once (YOLO) revolutionized the field of computer vision when it was introduced in 2015 by 

Joseph Redmon et al. through the paper "You Only Look Once: Unified, Real-Time Object Detection." This paper 

transformed object detection into a single-step regression problem, directly mapping image pixels to bounding boxes 

and class probabilities. This unified approach enabled the simultaneous prediction of multiple bounding boxes and 

class probabilities, significantly improving both speed and accuracy. Since its inception, the YOLO series has 

continued to evolve, becoming one of the foundational pillars of real-time object detection [18], [19]. YOLOv10 was 

first introduced by Wang et al. in 2024 and published in the journal titled "YOLOv10: Real-Time End-to-End Object 

Detection." This latest version pushes the boundaries further with innovative approaches aimed at reducing 

computational load while maintaining high accuracy. YOLOv10 incorporates advanced techniques such as NMS-free 

training and holistic model design, making it highly efficient for edge devices with limited computational 

resources.[20], [21], [22], [23]. 

AI-based systems, particularly those utilizing YOLO neural networks, offer efficient solutions for real-time 

detection of PPE usage in the workplace [24]. By leveraging the YOLO object detection algorithm, this technology 

can recognize various types of PPE such as helmets, safety goggles, vests, shoes, and gloves and verify their correct 

placement on the worker's body. One of YOLO's key strengths is its ability to process data quickly, making it well-

suited for implementation in camera-based monitoring systems without disrupting workers' activities [25], [26]. One 

of the main challenges in developing such systems is generating a representative dataset. With proper data collection 

and processing strategies, the dataset can accurately reflect real-world conditions. A well-prepared dataset enables the 

AI system to operate more efficiently and reliably in ensuring compliance with occupational safety standards. [27]. 

A study using YOLOv3 and RCNN with image sizes of 416×416 pixels and a dataset of 5,000 helmet images 

achieved a mAP of 97.12% [28]. Another study employed 608×608 pixel images with a dataset of 1,300 images 

consisting of six types (person, vest, and helmets in blue, red, white, and yellow), comparing the performance of 

YOLOv3, YOLOv4, and YOLOv5. The highest mAP was obtained using YOLOv5, which reached 86.55% [29]. 

YOLOv4 has also been used in previous research to detect human movement in real-time [30]. Another study using 

image resolution of 640×640 pixels showed promising results in safety object detection. By using the YOLOv5x 

model on a dataset of 5,000 safety helmet images, a mAP of 92.44% was achieved [31]. A dataset containing 1,699 

images for detecting classes such as person, vest, glasses, head, and helmets (red, yellow, blue, and white) using the 

YOLOx-m model resulted in the highest mAP of 89.84% [32]. In addition, a dataset of 6,045 images for helmet 

detection using the YOLOv5 method recorded a mAP of 94.7% [33], as shown in Table 2. 

Table 2. Comparison of Related Work 

Model Object Detection Description Reference 

YOLOv3 and RCNN Helmet Image size: 416×416 [28] 

YOLOv3, v4, v5 
Person, vest, and helmet 

(blue, red, white, yellow) 
Image size: 608×608 [29] 

YOLOv5 Helmet Image size: 640×640 [31] 

YOLOx-m 

Person, vest, glass, head, 

helmet (red, yellow, blue, 

white) 

Rotation: −10° to +10° [32] 

YOLOv5 Safety Helmet Grayscale images [33] 

Based on the results in Table 2, no previous study has implemented YOLOv10 for PPE detection with evaluations 

involving various image rotation angles to enhance the model’s robustness against perspective variations in the field. 

This study proposes the use of YOLOv10 with a resolution of 640×640 pixels and testing on PPE items such as yellow 

safety helmets, safety vests, gloves, and safety boots. The dataset used in this study was augmented with rotation 

angles of 0°, −45°, 45°, −90°, 90°, and 180° to simulate real-world variations in image capture angles. 

Method  

Several steps were carried out in this study to detect the use of PPE on construction workers, including data 

collection, data rotation, non-color augmentation, pre-processing, data splitting, implementation of YOLOv10, and 

analysis and evaluation to ensure that all workers are wearing PPE correctly and in accordance with established safety 

standards. The research stages are illustrated in Figure 1. 
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Figure 1. Research Workflow  

A. Data Collection 

This study utilized primary data collected through frame-by-frame image capture using a Redmi Note 10 Pro 

smartphone camera with a resolution of 108 MP. The data were gathered in an outdoor setting under natural lighting to 

achieve optimal results, documenting workers wearing PPE such as helmets, vests, gloves, and safety boots. A total of 

135 photos were collected, with sample data shown in Figure 2. 

B. Data Rotation 

This study applied data augmentation by rotating the images in the dataset at angles of 0°, −45°, 45°, −90°, 90°, 

and 180°. This technique was used to increase the variation in the training data, enabling the YOLOv10 model to be 

more adaptive in detecting objects with different orientations. The rotation is expected to help the model consistently 

recognize objects even when their positions or angles change, especially in dynamic construction environments. At 

this stage, the total number of images increased to 810, as illustrated in Figure 3. 

 

Figure 2. Data Collection  

 

Figure 3. Data Rotation 



134 ILKOM Jurnal Ilmiah Vol. 17, No. 2, August 2025, pp.131-139 E-ISSN 2548-7779 
  

 

 

Khoiril Umat, et. al. (YOLOv10 for Real-Time Detection of Personal Protective Equipment on Construction Workers) 

C. Pre-Processing 

To enhance object detection performance, a data augmentation process was carried out, starting with the conversion 

of images to grayscale format, as shown in Figure 4. This step aims to eliminate color information so that the model 

can focus more on key features such as shape, edges, and object textures, while minimizing the influence of irrelevant 

color variations. This approach is also expected to improve detection consistency under varying lighting conditions and 

in dynamic construction environments. This process resulted in 810 grayscale images, which were further augmented 

through rotation, increasing the total dataset from 135 to 1,620 images. Considering the original image resolution of 

3,000 × 4,000 pixels was relatively high and inefficient for processing, all images were resized to 640 × 640 pixels to 

match the input requirements of YOLOv10 and to reduce computational load without sacrificing important visual 

information. All pre-processed data were then labeled and annotated into five categories: person, yellow helmet, non-

yellow helmet, glove, and boots, as shown in Figure 5. 

D. Data Splitting 

At this stage, the dataset was divided into training, validation, and testing sets using two ratio schemes: 70:20:10 

and 80:10:10, from a total of 1,620 images. The selection of these schemes was based on a previous study that used a 

64:16:20 split and achieved a mAP of 72.3% [33]. Therefore, experiments using the 70:20:10 and 80:10:10 splits were 

chosen to evaluate the effect of data proportions on model performance more optimally. The detailed results of the data 

splitting process are presented in Table 3. 

 

Figure 4. Grayscale Images 

 

Figure 5. Pre-processing 
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E. Analysis and Evaluation 

The performance of the YOLOv10 model was evaluated using the mAP metric, with a focus on PPE class detection. 

The model demonstrated high accuracy in detecting various types of PPE, despite variations in data splitting and the 

number of training epochs. A batch size of 16 was used during training, meaning the model processed 16 images per 

iteration. The learning rate was set automatically, allowing the system to adjust the learning pace dynamically during 

training. Optimization was carried out using the AdamW optimizer, which combines the advantages of Adam with 

weight decay regularization to enhance model performance. Roboflow was utilized to accelerate the processes of 

annotation, augmentation (such as grayscale and rotation), and automated splitting of the dataset into training, 

validation, and testing sets. While the manual approach provided full control over data content and distribution, 

Roboflow offered efficiency and ease of use, especially when managing large-scale datasets. The performance 

differences between the two approaches were likely due to variations in data splitting methods and label inconsistencies 

in some images. Nevertheless, the model overall demonstrated excellent performance in accurately detecting PPE. 

F. Research Instrument 

The experiment was conducted using Google Colab Pro with access to an NVIDIA Tesla P100 or T4 GPU and 25 

GB of RAM, ensuring efficient training and evaluation of the YOLOv10 model. This implementation utilized deep 

learning frameworks and image processing libraries for data preprocessing, both optimized for high-performance 

computing. The cloud-based infrastructure of Google Colab Pro enabled real-time PPE detection and allowed for faster 

and longer model training compared to local setups, providing scalability for future experiments and real-time 

applications. 

Results and Discussion  

This section presents the experimental results of the YOLOv10 model used for PPE detection. We evaluated the 

model’s performance across different data splitting ratios and numbers of training epochs, and compared the outcomes 

with previous studies. The performance metric considered in this evaluation is limited to mAP. 

Table 3. Splitting Data 

Table 4. Test Results of Data Splits and Epochs 10–50 

Data 

Splitting E
p

o
ch

 

 

mAP 50 

Manual (%) Roboflow (%) 

N S M B X L N S M B X L 

70:20:10 

10 88,5 94,9 94,2 93,3 93,1 92,4 64,4 77,2 73,7 72,5 76,1 76,1 

20 93,6 96,8 96,6 96,7 96 96,6 74 80,5 79,8 78,4 80,5 79,7 

30 95,2 97,4 97,4 96,8 97,4 97,2 78,3 83,2 81,6 82,3 82,6 81,7 

40 96,5 97,1 97,6 97,7 97,6 97,1 80,2 82,9 83,2 83 83,5 82,5 

50 96,7 97,4 97,8 97,4 97,7 97,4 81,3 83,4 83,4 85,2 82,8 82,4 

80:10:10 

10 91,6 97,3 96,5 95,7 95,3 97,5 64,6 77,4 75,5 72,4 73,7 70,6 

20 95,4 97,3 98,1 98,1 96,6 97,4 73,9 81,5 78,6 79,4 77,2 80,8 

30 97 98,2 97,4 98,4 98,3 97,9 77,8 82,7 81,7 82,1 82,6 82 

40 96,5 97,4 98,2 97,3 97,8 97,7 79,2 83,6 82,8 82,2 81,9 82,9 

50 97,7 98 97,7 98,2 97,9 98,2 81,2 84,6 84,1 83,5 82,8 82,5 

A. Model Performance Evaluation 

To assess the effectiveness of the YOLOv10 model, several experiments were conducted using two different data 

splitting ratios 80:10:10 and 70:20:10 for training, validation, and testing and varying the number of epochs from 10 to 

50 to evaluate the model’s generalization capability across different datasets. Table 4 presents the comparison between 

manually split data and data processed using Roboflow, with mAP50 as the evaluation metric. In the 70:20:10 manual 

data split, the highest performance was achieved by the YOLOv10-M model with 50 epochs, reaching a mAP50 of 

97.8%. Meanwhile, testing with the Roboflow-generated dataset produced the best result using the YOLOv10-B model 

 
Data Splitting 

70 : 20 : 10 80 : 10 : 10 

Training 1.134 1.296 

Validation 324 162 

Testing 162 162 
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at 50 epochs, reaching a mAP50 of 85.2%. For the 80:10:10 split shown in Table 4, the highest mAP was obtained 

using the YOLOv10-M model with 30 epochs in the manual split, achieving 98.4%. On the other hand, testing with the 

Roboflow dataset yielded the best result using the YOLOv10-S model at 50 epochs, with a mAP50 of 84.6%. 

The difference in results between testing using Roboflow and manual testing is most likely due to variations in 

dataset construction, particularly in the distribution of training and testing data. In manual testing, several samples had 

more consistent annotations and a data split that allowed the model to learn from relevant case variations. Meanwhile, 

in testing conducted via Roboflow, there were indications of inconsistencies in image labels and a dataset split that 

placed validation samples into the testing set, which may have limited the model’s ability to effectively learn certain 

patterns. 

Nevertheless, although the Roboflow-based evaluation yielded mAP50 scores above 80% and the manual testing 

achieved impressive results exceeding 95%, these findings confirm that the developed model is highly capable of 

accurately recognizing and detecting PPE. This achievement highlights the strong potential for deploying the model in 

real-world scenarios, particularly in construction environments where strict monitoring of PPE compliance is essential 

for occupational safety. With consistently high detection performance, the model can be relied upon as a supportive 

tool for automation in computer vision–based safety systems. 

B. Comparison of Results with Previous Studies 

The performance of the YOLO model is compared with previous studies, as shown in Table 5. A study using 

YOLOv3 and CNN with a dataset of 1,500 images achieved a mAP50 of 72.3% [34]. In a subsequent study using the 

YOLOv5x model with 5,000 images and a resolution of 640 × 640 pixels, the mAP50 reached 92.44% [31]. In contrast, 

the proposed model using YOLOv10 achieved the highest mAP50 score of 98.4%. This comparison highlights the 

advantages of using YOLOv10 for comprehensive PPE detection, covering five object classes: Helmet, Vest, Glove, 

Boots, and Person. Meanwhile, the other two studies only included three object classes, making it more difficult to 

perform complete detection. YOLOv10 successfully recognized PPE objects with a high mAP, even across different 

data splits and epoch settings. 

C. Result Analysis  

The results of this study clearly demonstrate that the YOLOv10 model provides a significant improvement in PPE 

detection compared to previous research. The ability of the YOLOv10 algorithm to achieve high mAP50 scores under 

certain conditions reflects its potential for real-time implementation in construction environments. Through accurate 

and precise PPE detection, this technology is expected to contribute to reducing workplace accidents in the future, 

thereby creating a safer working environment for construction workers.  

In addition, the results of this study show that YOLOv10 remains stable across different data splits without 

exhibiting signs of overfitting, making it suitable for application in scenarios with diverse data. The model not only 

outperforms previous YOLO versions but also offers a reliable solution for PPE detection in dynamic construction 

environments. Future research will focus on expanding the dataset and incorporating additional object classes, so that 

the model can be applied more broadly not only in the construction sector but also in other industries that require 

computer vision–based safety detection systems. 

Table 5. Comparison Between Studied Methods and the Proposed Method 

Author 
Object 

Detection 
Method Results 

N. D. Nath, A. H. 

Behzadan, and S. G. 

Paal [34] 

Worker, Hat, 

Vest 

 

YOLOv3 and 

CNN 

Using a dataset of 1,500 images of workers wearing various 

PPE, a mAP50 of 72.3% was obtained. 

A. Hayat and F. 

Morgado-Dias [31] 

Head, Helmet, 

Person 

 

YOLOv5 

 

Using 5,000 images of safety helmets with a data split of 60% 

training, 20% testing, and 20% validation at a resolution of 

640×640 pixels, the YOLOv5x model achieved a mAP50 of 
92.44%. 

Proposed Research 

Helmet, Vest, 

Glove, Boots, 

Person 

 

YOLOv10 

For the 70:20:10 data split, manual testing showed the 
highest mAP50 of 97.8% at epoch 50 with the YOLOv10-M 

model, whereas testing using Roboflow achieved the highest 

mAP50 of 85.2% at the same epoch with the YOLOv10-B 

model. In the 80:10:10 data split, manual testing recorded the 
highest mAP50 of 98.4% at epoch 30 with the YOLOv10-M 
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Author 
Object 

Detection 
Method Results 

model, while testing with Roboflow yielded the highest 

mAP50 of 84.6% at epoch 50 using the YOLOv10-S model. 

Conclusion  

This study demonstrates significant results for the YOLOv10 algorithm in detecting PPE, achieving a mAP50 

score of 98.4% with the YOLOv10-M model on the 80:10:10 manually split dataset. Meanwhile, the 70:20:10 manual 

split yielded a mAP50 score of 97.8% with the YOLOv10-M model. Testing with Roboflow on the 70:20:10 dataset 

achieved a mAP50 score of 85.2% using the YOLOv10-B model, while the 80:10:10 Roboflow dataset reached a 

mAP50 of 84.6% with the YOLOv10-S model. 

This study has not yet considered PPE detection under extreme lighting conditions or unusual body positions, 

which may affect the model’s performance in real-world scenarios. The study also has limitations regarding the 

quantity and diversity of the data used, as well as reliance on the quality of manual and automated annotations from 

Roboflow. Future research should focus on expanding the dataset to include various lighting conditions and worker 

position variations, along with further optimization of Roboflow-based testing to achieve higher mAP50 scores. These 

findings have significant implications for PPE detection in construction environments and hold potential for real-time 

implementation on construction sites. 
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