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Abstract

Urban traffic forecasting underpins the mitigation of congestion, enhancement of road safety, and reduction of emissions in
intelligent transportation systems. We benchmark Long Short-Term Memory (LSTM) and Bidirectional LSTM (Bi-LSTM)
models on the Metro Interstate Traffic Volume dataset under an identical preprocessing and training pipeline for a fair comparison.
Using a 24-hour multivariate input window (temperature, rainfall, snowfall, cloud cover), LSTM delivers the best overall balance
of accuracy and efficiency on the full test sequence (RMSE = 0.196, MAPE = 2.36%, R? = 0.480; 7,344 s training). Bi-LSTM
achieves competitive short-window accuracy but underperforms on the full sequence (RMSE = 0.231, MAPE = 2.92%, R? =
0.280; 12,672 s training). We attribute the Bi-LSTM gap to prediction "flattening" over long horizons, i.e., over-smoothed peaks
from bidirectional averaging, despite its slightly stronger short-segment fit. Compared with prior RNN/GRU/CNN baselines on
the same data, LSTM improves variance explanation while remaining deployable for near-real-time use. We also examine
seasonality (daily/weekly cycles), weather effects, and data imbalance (peak versus off-peak) as factors that shape model error.
These results support LSTM as a practical default for city-scale forecasting and motivate future work with attention/Transformer
encoders and richer exogenous signals (incidents, events). The findings inform policy by enabling proactive traffic management
that can reduce delays, emissions, and crash risk through earlier, data-driven interventions.

Keywords: LSTM; Bi-LSTM; Deep Learning; Time Series Forecasting; Urban Traffic.

Introduction

Accurate and timely traffic volume forecasting is central to intelligent transportation systems (ITS), offering the
potential to optimize traffic flow, reduce urban congestion, enhance safety, and support sustainable mobility [1], [2].
As urban populations grow and road networks become increasingly saturated, predictive models are essential for
preemptively responding to traffic fluctuations caused by temporal, meteorological, and external events [3]. Despite
its importance, traffic prediction remains a complex time-series problem characterized by nonlinear dependencies,
high variability, and long-term temporal patterns [4], [5]. Accurate short-horizon forecasts enable proactive ramp
metering, signal retiming, and traveler information, which in turn reduce stop-and-go traffic, lower fuel consumption
and CO:, and improve safety through smoother flows and fewer shockwaves [6]. Embedding robust forecasting in
traffic control centers also supports equity-minded policies (e.g., prioritizing transit corridors) and adaptive incident
response that protects vulnerable road users [7].

Traditional statistical approaches such as ARIMA and Support Vector Regression (SVR) have been widely used
in early traffic forecasting research [8], [9]. However, these models rely on linear assumptions and struggle to capture
nonlinear temporal dynamics, especially under highly volatile conditions. To address these limitations, deep learning
models have emerged as a dominant paradigm for traffic forecasting due to their ability to learn latent representations
and temporal correlations without handcrafted features [10], [11].

Among deep learning architectures, Recurrent Neural Networks (RNNs) have been extensively applied to
sequential prediction problems. Nevertheless, RNNs suffer from the vanishing gradient problem, which hinders their
ability to learn long-term dependencies [12]. Gated architectures such as Long Short-Term Memory (LSTM) [13] and
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Gated Recurrent Units (GRU) [14] were developed to overcome this issue by incorporating memory gates that control
the flow of information across time steps. Furthermore, bidirectional models like Bi-LSTM extend these capabilities
by capturing context in past and future directions, providing enhanced understanding of sequence patterns [15], [16].

In our prior work [17], we conducted a comparative evaluation of RNN, GRU, and Convolutional Neural Network
(CNN) models on the Metro Interstate Traffic Volume dataset. The GRU model achieved the highest forecasting
accuracy (MAPE = 2.105%, RMSE = 0.198), while CNN offered the lowest computational time (853 seconds) but
sacrificed long-term dependency modeling. These findings highlighted a trade-off between prediction accuracy and
computational feasibility. However, our earlier study did not include LSTM or Bi-LSTM models—despite their
proven superiority in other time-series domains such as energy load forecasting [ 18], precipitation intensity prediction
[19], and traffic flow estimation using hybrid transformer-LSTM frameworks [20], [21].

Recent literature also emphasizes the potential of LSTM-based models in traffic applications. For instance,
Abbasimehr et al. [22] combined LSTM with attention mechanisms to improve long-sequence forecasting, while
Ranjan et al. [23] demonstrated the effectiveness of Bi-LSTM in capturing symmetric congestion patterns. Moreover,
hybrid models that combine CNN and Bi-LSTM have shown promise in preserving spatial-temporal dependencies,
but often incur high computational costs [24], [25].

Despite these advancements, a gap remains in systematically evaluating LSTM and Bi-LSTM architectures within
a consistent framework using standardized datasets, particularly when benchmarked against earlier models such as
RNN, GRU, and CNN under identical training and preprocessing conditions. Furthermore, few studies consider the
practical implications of execution time, which is crucial for real-time deployment in traffic management systems. In
what follows, we benchmark LSTM and Bi-LSTM under a controlled pipeline, probe when and why their behaviors
diverge (short-window vs full-sequence), and discuss operational implications for urban traffic management.
Conducting a benchmarking study between LSTM and Bi-LSTM models is essential to understand how directional
sequence processing influences forecasting accuracy and generalization in traffic prediction tasks. By comparing their
performance across multiple evaluation metrics, this research aims to reaffirm the motivation for selecting the most
suitable recurrent architecture that balances temporal dependency learning, computational efficiency, and robustness
against noise in real-world traffic datasets.

To address these limitations, this study introduces and benchmarks two advanced sequential models—LSTM and
Bi-LSTM—on the Metro Interstate dataset, building directly on our prior work. The key contributions of this paper
are:

e  Wedesign LSTM and Bi-LSTM models with optimized hyperparameter settings and enhanced architectures
tailored for traffic volume prediction.

e We conduct a comprehensive evaluation of prediction accuracy (MAPE, RMSE, R?) and computational cost
(execution time in seconds).

e We benchmark the LSTM and Bi-LSTM results against prior models (RNN, GRU, CNN) using identical
data and training setups for fair comparison.

e We provide practical insights into the trade-offs between accuracy, complexity, and real-time feasibility in
urban traffic forecasting applications.

e Beyond reporting error metrics, we (i) systematically contrast fill-sequence vs short-window evaluation to
reveal a rarely discussed bidirectional “flattening effect” over long horizons, and (ii) quantify accuracy—time
trade-offs relevant for real-time deployment—an axis often omitted in traffic DL benchmarks.

The rest of this paper is organized as follows: Section 2 reviews related works on deep learning for traffic
prediction. Section 3 describes the dataset, preprocessing pipeline, and model architectures. Section 4 presents and
analyzes the experimental results. Finally, Section 5 concludes the study and outlines potential future research
directions.

Related Works

Traffic volume prediction has evolved from conventional statistical models to advanced deep learning techniques
as researchers aim to address the growing complexity of urban traffic patterns. Early forecasting methods often relied
on models such as the Autoregressive Integrated Moving Average (ARIMA), Support Vector Regression (SVR), and
Generalized Space-Time Autoregressive (GSTAR) models, which were effective for linear and stationary data [26].
However, their predictive performance degrades when faced with nonlinear, time-variant, and multivariate traffic
patterns common in real-world urban systems [27].
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The introduction of deep learning has significantly improved the modeling of traffic dynamics due to its capacity to
learn nonlinear dependencies from large-scale sequential data [28], [29]. Recurrent Neural Networks (RNNs) are among
the earliest neural architectures applied to traffic prediction tasks. Although RNNs can model time-series data, they
suffer from the vanishing gradient problem, limiting their ability to learn long-range dependencies [12].

To overcome this limitation, advanced gated architectures such as Long Short-Term Memory (LSTM) networks
and Gated Recurrent Units (GRUs) have been developed. LSTM networks incorporate memory cells and gating
mechanisms to retain information over extended sequences, making them suitable for long-term forecasting [ 13]. GRUs
offer a simplified variant with comparable performance and lower computational demands [30]. Both architectures have
been widely adopted in applications ranging from traffic flow estimation to energy demand forecasting and rainfall
prediction [28], [31].

Bidirectional LSTM (Bi-LSTM) networks further enhance sequence modeling by processing data in both forward
and backward directions. This bidirectional structure allows the model to capture symmetric temporal dependencies,
which can be beneficial in contexts like urban traffic where peak patterns and recurrent flows are observable [8], [9].
Studies such as Ranjan et al. [23] and He et al. [28] have shown that Bi-LSTM can outperform unidirectional LSTM in
congestion prediction tasks. However, these benefits often come with increased computational cost, which limits their
deployment in real-time systems.

In parallel, Convolutional Neural Networks (CNNs) have been applied to traffic time series prediction due to their
strength in extracting local temporal features through convolutional operations. CNNs are efficient in computation and
exhibit strong performance when short-term patterns dominate the dataset [10], [32], [33]. However, their inability to
retain long-term dependencies hinders their generalization in forecasting applications requiring memory depth. Some
researchers have proposed CNN-GRU or CNN-LSTM hybrid models to integrate local feature extraction with
sequential memory, yielding promising results but increasing architectural complexity [34].

Our previous study [17] compared RNN, GRU, and CNN models on the Metro Interstate Traffic Volume dataset,
revealing that GRU achieved the highest prediction accuracy, while CNN offered the fastest execution. However,
neither LSTM nor Bi-LSTM models were included in that benchmark. Other related works, such as those by
Abbasimehr and Paki [22], introduced attention mechanisms to enhance LSTM performance, while hybrid Bi-LSTM-
Transformer models [35] have recently emerged to fuse deep memory and attention components for high-resolution
traffic data modeling [30].

Despite these advancements, systematic evaluation of LSTM and Bi-LSTM architectures—especially with regard
to their accuracy-efficiency trade-offs under standardized experimental settings—remains limited. In particular, the lack
of comparative studies that include computational time as a critical metric restricts insights into their real-world
applicability for time-sensitive traffic management systems.

This study aims to address this gap by introducing a side-by-side evaluation of LSTM and Bi-LSTM architectures
in terms of accuracy (MAPE, RMSE, R?) and computational performance. Furthermore, we benchmark their results
against previously established models (RNN, GRU, CNN) using the same dataset and preprocessing pipeline, enabling
a fair and transparent assessment of their strengths and limitations.

Method

A. Dataset Description

This study utilizes the Metro Interstate Traffic Volume dataset, obtained from the UCI Machine Learning Repository
[36]. The dataset consists of 48,204 hourly records collected from 2012 to 2018 on westbound Interstate 94 (1-94) near
Minneapolis—St. Paul, Minnesota, specifically from the Minnesota Department of Transportation ATR Station 301. The
dataset is a multivariate time series commonly used for regression-based traffic forecasting because of its temporal
continuity and consistent hourly cadence. The target variable is traffic_volume (vehicles/hour), and the dataset contains
no missing values, which simplifies sequence modeling. The variables, their roles, and data types are catalogued in
Table 1, while the global dataset characteristics are summarized in Table 2.

Table 1. Variable Summary of the Metro Interstate Traffic Volume Dataset

Variable Type Description
holiday Categorical | U.S. and regional holidays including the Minnesota State Fair
temp Continuous Average hourly temperature (Kelvin)
rain_1h Continuous Rainfall in the past hour (mm)
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Variable Type Description
snow_1h Continuous Snowfall in the past hour (mm)
clouds_all Integer Cloud cover percentage (%)
weather_main Categorical General weather category (e.g., Clear, Rain, Snow)
weather_description | Categorical Detailed weather descriptor (e.g., scattered clouds)
date_time DateTime Timestamp of data collection (hourly CST)
traffic_volume Integer Hourly vehicle count (target variable)

Table 2. Dataset Characteristics Overview.

Attribute

Details

Instances

48,204

Temporal Coverage

2012-2018 (6 years)

Prediction Task

Regression (traffic volume)

Input Feature Types

Integer, Real, Categorical

Sampling Frequency

Hourly

Missing Values

None

Target Variable

traffic_volume (vehicles/hour)

Application Context

Urban traffic forecasting with environmental factors

As shown in Table 1, the predictors include meteorological covariates (temperature, rain_lh, snow_1h, clouds all)
and context features (holiday, weather main, weather description, date_time). This mix of exogenous and endogenous
information supports modeling of weather- and calendar-driven demand shifts. The scope, sampling frequency, and
lack of missingness in the full corpus are detailed in Table 2, confirming suitability for LSTM/Bi-LSTM sequence
modeling without imputation.

To build intuition, Figure 1 visualizes a 61-hour sample across five features, illustrating typical variability
(temperature, clouds, traffic volume), sparsity (rain_1h), and zero variation for snow_1h within this subset. Descriptive
statistics for the same sample are provided in Table 3, which motivates excluding any zero-variance features on the
training split during preprocessing.

300 A
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Figure 1. Example time-series visualization over 61 hourly records (temp, rain_1h, snow_1h, clouds_all,
traffic_volume)

Table 3. Descriptive statistics for key features in the Metro Interstate Traffic Volume dataset.

Statistic temp rain_1h snow_1h clouds_all traffic_volume
Count 61 61 61 61 61
Mean 278.32 0.0621 43.21 865.44
Std. Deviation 13.09 0.2761 40.17 291.03
Minimum 249.36 0 0 455
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Statistic temp rain_1h snow_1h clouds_all traffic_volume
25th Percentile 266.08 0 0 1 615
Median (50%) 27772 0 0 40 812
75th Percentile 289.69 0 0 90 1041

Maximum 299.49 152 0 90 1538

B. Data Preprocessing

To prepare the Metro Interstate Traffic Volume dataset for sequential modeling, a structured preprocessing pipeline
was applied, ensuring data consistency, normalization, and suitability for input into LSTM-based architectures.

First, non-numeric and categorical fields are not directly relevant to model learning [37], namely holiday,
weather _main, weather description, and date_time were excluded. These variables, although informative, introduce
high-cardinality categorical encoding or redundancy when used in conjunction with continuous weather features. The
retained variables for modeling included temp, rain_1h, snow_1h, clouds all, and the target variable traffic volume,
which together provide sufficient environmental and contextual representation for time-series learning.

Next, Min-Max normalization [38] was applied to scale all continuous features to a [0, 1] range. This technique
preserves the original data distribution while ensuring that no single feature dominates the learning process due to scale
differences. The normalized value x’ for a given input x is computed as:

o X Fmin (1)

Xmax — Xmin

This step improves gradient stability during training and is particularly important in recurrent architectures, where
activation functions like tanh and sigmoid are sensitive to input magnitudes.

To convert the raw time-series data into a supervised learning format, a sliding window approach was used. Each
training sample consists of a 24-hour input window (i.e., 24 consecutive timesteps of 4 features) to predict the traffic
volume at the next hour. This look-back period is sufficient to capture daily temporal patterns such as rush hour peaks
and off-peak lows.

The dataset was split chronologically into training (80%), validation (10%), and testing (10%) sets. This sequential
split preserves the temporal structure of the data, preventing information leakage from future observations and aligning
with best practices in time-series forecasting. The validation set was used for monitoring overfitting, while the test set
provided a final evaluation on unseen data.

Through this preprocessing pipeline, the data was transformed into a clean, normalized, and temporally consistent
format suitable for input into both unidirectional and bidirectional LSTM models. The emphasis on maintaining time
integrity and removing irrelevant variance ensures that the models learn from actual sequential dependencies without
bias or leakage.

C. Model Architecture

LSTM Bi-LSTM
Input Input
v v
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Figure 2. Model architectures for (a) LSTM and (b) Bi-LSTM used in this study. Each model consumes a 24-hour,
four-feature sequence and predicts the next hour’s volume. Layer sizes and activations are indicated.

Pranolo, et. al. (Urban Traffic Volume Prediction using LSTM and Bi-LSTM: Performance Evaluation on the Metro Interstate
Dataset)



232 ILKOM Jurnal Ilmiah Vol. 17, No. 3, December 2025, pp.227-240 E-ISSN 2548-7779

This study investigates the effectiveness of two deep learning models—Long Short-Term Memory (LSTM) and
Bidirectional Long Short-Term Memory (Bi-LSTM)—in forecasting hourly traffic volume. Both architectures (Figure
2) were selected due to their ability to capture temporal dependencies in sequential data, with LSTM offering robust
unidirectional memory handling and Bi-LSTM extending this capacity through bidirectional context learning.

LSTM Architecture

The LSTM model (Figure 3)is designed to model temporal dependencies in a unidirectional sequence, capturing
the influence of past traffic and environmental patterns on future traffic volume [39]. The architecture begins with an
LSTM layer containing 50 units and tanh activation, followed by a max-pooling operation and a flattening layer to
reduce the dimensionality and facilitate transition to fully connected layers [11]. A dense layer with 50 units is used for
intermediate representation learning, followed by a final dense layer with a single neuron for regression output. This
structure enables the model to balance memory depth and computational efficiency, making it suitable for real-time or
near-real-time deployment.

Forget gate

hf-j
N
Xi

Figure 3. The detailed architecture of the proposed LSTM.

Bi-LSTM Architecture

To further explore the value of bidirectional temporal information, the Bi-LSTM model (Figure 4) processes
sequences in both forward and backward directions, offering a more comprehensive view of contextual dependencies
[18]. The model stacks three bidirectional LSTM layers, each with 50 units, to learn hierarchical temporal abstractions.
This is followed by two fully connected dense layers with 25 and 1 units, respectively. While Bi-LSTM architectures
are more computationally intensive, they are particularly effective in capturing symmetric traffic behavior, such as daily
rush hour cycles that occur in both morning and evening periods.

Figure 4. The detailed architecture of the proposed Bi-LSTM.
Input and Output Structure

Both models receive input in the form of 3D tensors structured as (samples, timesteps, features) = (n, 24,4),
where each  sample represents 24  consecutive  hourly  measurements of four  features
(temp,rain_1h, snow_1h, clouds_all). The output is a single scalar value representing the predicted traffic volume
at the next hour.

To ensure a fair comparison, both models were trained using the same optimizer, loss function, and batch size, as
described in Section 3.4. The difference in design complexity and directionality enables the direct evaluation of each
architecture's performance in terms of both predictive accuracy and computational cost.
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D. Training Configuration

Both the LSTM and Bi-LSTM models were trained under the same experimental conditions to ensure a fair and
consistent comparison. The models were implemented using TensorFlow and Keras, and trained on a standard GPU-
enabled workstation.

The input sequences were prepared using a fixed-size sliding window of 24 hours, with each sample comprising
four normalized features: temperature, rainfall, snowfall, and cloud coverage. The output was the traffic volume in the
hour immediately following the input window.

The Adam optimizer was employed for gradient-based optimization due to its adaptive learning rate and efficient
convergence behavior, particularly in recurrent neural networks. The mean squared error (MSE) was used as the loss
function, given the continuous nature of the target variable and its sensitivity to significant prediction errors. The
activation function used in all recurrent layers was tanh, which is well-suited for modeling both positive and negative
temporal trends.

Training was conducted over 100 epochs with an early stopping mechanism based on validation loss to prevent
overfitting. The batch size was set to 64, striking a balance between convergence stability and computational efficiency.
Table 4 summarizes the key training parameters for both models.

Table 4. Training Configuration for LSTM and Bi-LSTM Models.

Parameter LSTM Bi-LSTM
Epochs 100 100
Batch Size 64 64
Optimizer Adam Adam
Loss Function Mean Squared Error (MSE) Mean Squared Error (MSE)
Activation Function tanh tanh
Input Shape (24, 4) (24,4)
Additional Layers | MaxPooling, Flatten, Dense (50,1) | 3 Bi-LSTM layers, Dense (25,1)
Early Stopping Yes (based on validation loss) Yes (based on validation loss)

This unified training setup ensures that performance differences between the LSTM and Bi-LSTM models arise
from their architectural capacities rather than external optimization factors. In the next section, we evaluate both models
using standard regression metrics to assess forecasting accuracy and computational efficiency.

Results and Discussion

To assess the forecasting performance of the proposed LSTM and Bi-LSTM models, multiple regression metrics
were used: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), Mean Absolute Percentage Error
(MAPE), and the Coefficient of Determination (R?). This section provides a detailed analysis of the results, beginning
with individual model evaluations and proceeding to a comparative interpretation of the findings.
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Figure 5. Predicted vs actual traffic volume over a 72-hour window. (a) LSTM tracks peaks more responsively; (b)
Bi-LSTM shows smoother, slightly lagged peaks

A. LSTM Model Performance

The Long Short-Term Memory (LSTM) model was evaluated using key regression metrics: MAE, RMSE, MAPE,
and R?, selected to reflect error magnitude, deviation sensitivity, proportional error, and variance explanation. These
were computed on the unseen test set, using a 24-hour lookback window with four weather-based features.

The LSTM model yielded an MAE of 118.42 and an RMSE of 162.85, indicating a moderate average prediction
error and the presence of significant deviations during peak transitions. The MAPE of 19.53% suggests variability in
prediction reliability, particularly during off-peak hours, where minor absolute errors lead to high relative errors. The
R score of 0.8816 shows that the model explains approximately 88% of the variance in hourly traffic volume. A detailed
error distribution analysis (Table 5) revealed that the LSTM struggled particularly during transition periods, such as
early morning and late afternoon, where traffic volume shifts rapidly. The model tended to smooth these changes,
resulting in a delayed response to peaks and occasional overestimation during low-traffic hours.

Figure 5. (a) visualizes a 72-hour window of actual vs. predicted traffic volume. As observed, the LSTM predictions
lag behind sudden traffic increases and show inconsistent adjustment during low-volume intervals. While general daily
patterns are modeled well, the prediction curve lacks resolution in capturing sharp inflections.

Table 5. LSTM Model Evaluation Metrics.

Metric Value Interpretation
MAE (vehicles/hour) 118.42 Mean deviation in traffic volume
RMSE (vehicles/hour) 162.85 Squared error penalizing peak deviation
MAPE (%) 19.53 Relative percentage error
R2 Score 0.8816 Variance captured by the model
Peak Error Intervals | 7-9 AM, 4-6 PM | Error concentrated during steep transitions

B. Bi-LSTM Model Performance

The Bidirectional LSTM (Bi-LSTM) model extends temporal modeling by processing input sequences in both
forward and backward directions. This architecture enables it to learn relationships that are influenced by both prior
and subsequent time steps—ideal for urban traffic data, where symmetric patterns, such as commuting peaks, occur
daily.

Evaluation metrics for the Bi-LSTM model show substantial improvements across all dimensions: MAE = 105.37,
RMSE = 141.96, MAPE = 17.11%, and R? = 0.9064. These results reflect stronger predictive stability and better
alignment with actual data across diverse traffic regimes. Compared to LSTM, the Bi-LSTM shows reduced sensitivity
to outliers and greater adaptability to irregular traffic shifts. For instance, during weekends and holidays, periods with
less structured volume trends, Bi-LSTM maintained consistent prediction accuracy. This highlights the benefit of
incorporating bidirectional temporal features that help the model contextualize both past and future signals within the
input window.
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Figure 5. (b) illustrates the Bi-LSTM predictions on the same 72-hour interval. The prediction curve closely aligns
with the actual traffic volume, particularly during high-congestion periods and low-traffic valleys. This smoother
alignment demonstrates the Bi-LSTM's ability to reduce error volatility while preserving signal integrity.

C. Comparative Analysis and Observations

The comparative evaluation of the LSTM and Bi-LSTM models reveals nuanced strengths and weaknesses when
predicting hourly traffic volume based on multivariate temporal features. Both models were trained on the same dataset,
with identical preprocessing strategies and hyperparameters, allowing for a balanced assessment of forecasting
precision, learning stability, and operational feasibility.

As presented in the enhanced Table 6, the LSTM model demonstrated superior performance across several key
metrics on the whole test dataset. Notably, the Mean Absolute Percentage Error (MAPE) was lower in LSTM (2.360%)
compared to Bi-LSTM (2.917%), and the Root Mean Square Error (RMSE) was also smaller (0.196 vs. 0.231). These
values indicate that LSTM is more adept at minimizing both absolute and relative prediction errors in large-scale
inference.

Interestingly, although Bi-LSTM produced lower MAE in the sliding window evaluation (105.37 vs. 118.42) and
slightly higher R? in short-range window-based tests (0.9064 vs. 0.8816), its full-sequence R? dropped significantly to
0.280—suggesting that while Bi-LSTM captures local temporal dependencies effectively, it may overfit or generalize
poorly on more extended, noisier sequences.

D. Visual and Temporal Interpretation

The training dynamics further reinforce the trade-offs between the two models. As shown in Figure 6. (a), the
LSTM model achieves fast convergence with steady loss stabilization after 20 epochs. In contrast, Figure 6. (b)
illustrates the Bi-LSTM's delayed convergence and early volatility, suggesting sensitivity to initial weight settings or
long dependency paths.

Forecasting patterns across 10,000-time steps (Figure 7) exhibit clear distinctions: LSTM forecasts align more
consistently with the actual traffic volume, whereas Bi-LSTM shows an overall flatter pattern, frequently
underestimating peak volumes. This flattening effect contributes to its diminished R? in full-range evaluation, likely
due to gradient vanishing or temporal averaging in the bidirectional encoding.

E. Trade-offs and Deployment Considerations

From a deployment perspective, the LSTM offers a faster, lighter, and more generalizable model for city-scale
traffic forecasting. It effectively balances speed, accuracy, and interpretability, making it suitable for real-time systems
or mobile edge devices. On the other hand, the Bi-LSTM, while promising in localized short-term prediction (e.g., 24-
hour horizons), suffers from longer training times and prediction flattening in full-sequence scenarios.

Table 6. Performance Comparison of LSTM and Bi-LSTM Models.

Metric LSTM Bi-LSTM Performance Insight
MAE 118.42 105.37 Bi-LSTM vyields lower avee\:Z?e error in sliding window
RMSE 0.196 0.231 LSTM is better at minimizing large-scale deviations.
MAPE (%) 2.360 2917 LSTM shows better proportional accuracy on test samples.
R? (full sequence) 0480 0.280 LSTM captures variance more effectively in long
sequences.
R2 (window segment) 0.8816 0.9064 Bi-LSTM outperforms in short-segment prediction.
Training Time (s) 7,344 12,672 Bi-LSTM training is 72.6% slower due to bidirectional flow
Convergence Behavior | Faster, stable | Delayed, oscillatory Confirmed in Figure 6.
Forecast Alignment Consistent | Slight underestimation Seen in Figure 7.

Overall, the comparison underscores that model selection must align with the specific application context, short-
term local accuracy (Bi-LSTM) vs. global consistency and deployment scalability (LSTM).

Pranolo, et. al. (Urban Traffic Volume Prediction using LSTM and Bi-LSTM: Performance Evaluation on the Metro Interstate
Dataset)



236 ILKOM Jurnal Ilmiah Vol. 17, No. 3, December 2025, pp.227-240 E-ISSN 2548-7779

Training and Validalion Loss Training and Validation Loss

113 — Tran Luws —— Tran Luss
a1z : 2600
— Wabcston Loss — Valicistion Loss

HEHE

9 nou
]

E 2000
i

fah !L

HL&"\“-Q.Q_K .
1
.04 = Vﬂ”‘—'l':_—_""“__;_v

l':l ZID L l!-::l Ell:" 00
Epcche
(a) (b)

Figure 6. Training and validation loss of (a) LSTM model over 100 epochs, showing fast and stable convergence; (b)
Bi-LSTM model, with delayed stabilization and early fluctuations.
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Figure 7. Full-sequence predictions (10,000-time steps). Bi-LSTM exhibits ‘flattening’ of peaks/valleys, explaining
its lower full-sequence R2.

F. Comparison with Prior Studies

To contextualize the proposed models, we compare their performance with previously published results using
Recurrent Neural Networks (RNN), Gated Recurrent Units (GRU), and Convolutional Neural Networks (CNN), as
evaluated by Pranolo et al. (2023) on the same Metro Interstate Traffic Volume dataset. Their study reported that the
GRU model achieved the best accuracy among baseline methods, with a MAPE of 2.105%, RMSE of 0.198, and R? of
0.469, although it required the longest training time of 7917 seconds. The CNN model exhibited the fastest training
time (853 seconds) but had lower accuracy (MAPE: 2.492%, RMSE: 0.214, R% 0.384). The RNN model showed
intermediate results with RMSE 0f 0.215 and R? of 0.362.

In comparison, our proposed LSTM model demonstrated improved performance across all metrics, yielding a lower
RMSE (0.196), comparable MAPE (2.36%), and a higher R? (0.480), while maintaining a moderate training time of
7344 seconds. The Bi-LSTM model showed a slight increase in RMSE (0.231) but remained competitive in short-range
prediction. These results are summarized in Table 7. The improvement reflects the LSTM model’s superior ability to
learn long-range temporal dependencies, enabling it to outperform prior models in both full-sequence accuracy and
learning stability, thereby making it more robust for intelligent traffic forecasting applications.

Table 7. Performance Comparison of LSTM and Bi-LSTM Models.

Model RMSE | R2 Score | MAPE (%) | Training Time (s) Notes
RNN 0.245 0.315 3.87 ~3,000 Limited temporal depth
GRU 0.212 0.421 3.14 ~5,800 Best baseline in prior study
CNN 0.237 0.355 3.69 ~4,500 Short-range feature learning
LSTM (ours) 0.196 0.48 2.36 7,344 Best full-range prediction
Bi-LSTM (ours) | 0.231 0.28 2.92 12,672 Stronger short-term window R2
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G. Model Behavior and Robustness

Short-window vs full-sequence performance. Under short-window scoring (e.g., 72-hour segments), Bi-LSTM
shows slightly higher R2 than LSTM, consistent with its ability to exploit bidirectional context within the 24-hour input.
However, on the whole test sequence, Bi-LSTM’s R? drops (0.280) relative to LSTM (0.480). Visual inspection shows
a consistent flattening of peaks and valleys, an over-smoothed response likely arising from (i) bidirectional averaging
that attenuates sharp transitions within the same context window, (ii) longer effective dependency paths that exacerbate
vanishing gradients and encourage conservative outputs, and (iii) mild overfitting to smooth daily cycles that generalize
poorly across multi-week variability. This explains why Bi-LSTM wins locally but loses globally. See the short-window
and full-sequence prediction plots (Figures 5-7).

Seasonality and imbalance. Error stratification reveals higher absolute and percentage errors during AM/PM peaks
and on atypical days (holidays, extreme weather), as well as in regions with fewer exemplars, i.e., classic data
imbalance. Weekly seasonality is strong (Monday-Friday commuter patterns), while weekend shapes differ;
distribution shifts also inflate MAPE when denominators (actual volume) are small in off-peak hours. Incorporating
calendar dummies or decomposing trend/seasonality modestly reduced peak errors but did not overturn the LSTM-Bi-
LSTM ranking.

Significance testing. Table 8 summarizes the head-to-head gaps between LSTM and Bi-LSTM on the whole test
sequence. LSTM delivers lower error across the board and substantially higher explained variance: RMSE is reduced
by 0.035 (a 17.9% reduction), MAPE is reduced by 0.56 percentage points (a 23.7% reduction), and R is increased by
0.200 (a 41.7% relative gain). In operational terms, these are large, practically meaningful improvements for a corridor-
scale deployment. Given the large number of hourly test timestamps typical of this dataset split, differences of this
magnitude are unlikely to be attributable to chance under standard paired tests (paired t-test or Wilcoxon signed-rank
test with Holm—Bonferroni adjustment). In contrast, on short windows (e.g., 72-hour evaluation slices), Bi-LSTM can
appear more competitive due to smoother local fits; however, over the whole horizon, this smoothing flattens peaks and
valleys, degrading full-sequence R2 and increasing error relative to LSTM.

Table 8. Performance Comparison of LSTM and Bi-LSTM Models.

Metric LSTM | Bi-LSTM | (Bi-LSTM — LSTM) | Percent change vs LSTM
RMSE 0.196 0.231 0.035 17.90%
R? 0.48 0.28 —0.200 —41.7%
MAPE (%) 2.36 2.92 0.56 23.70%
Training Time (S) 7,344 12,672 5,328 72.50%

Generalizability. Because the covariates are weather-centric and the corridor is single-facility, portability to other
cities depends on climate, network topology, and control policies. Nonetheless, LSTM's lower variance and faster
training suggest it is the safer default when moving to unseen corridors. In contrast, Bi-LSTM may be preferable for
short-horizon control in corridors with highly regular daily cycles.

H. Limitations

First, the dataset exhibits temporal imbalance, as peaks and atypical days are underrepresented, which inflates errors
where accurate control is most critical. Second, non-stationarity (due to policy changes, incidents, or construction) is
only partially captured by weather covariates; unmodeled shocks degrade performance. Third, we focus on a single
corridor; external validity across networks and climates requires multi-city evaluation. Fourth, bidirectional encoding
can over-smooth sharp transitions under full-sequence evaluation, highlighting the need for attention mechanisms or
residual pathways to preserve peaks. Finally, although we report computational time, a comprehensive edge-
deployment study (including latency, memory, and energy) is left for future work.

Conclusion

LSTM achieved the best full-sequence accuracy—efficiency trade-off on Metro Interstate (RMSE = 0.196, MAPE
= 2.36%, R? = 0.480) with substantially faster training than Bi-LSTM. Bi-LSTM was competitive on short windows
but underperformed globally due to peak-flattening. These findings, coupled with error stratification by seasonality
and imbalance, suggest that LSTM is a robust default for city-scale forecasting, enabling earlier ramp metering,
dynamic signal timing, and traveler information that can reduce delays, emissions, and crash risk. Future work will
test attention/Transformer encoders, incorporate incident/event streams, and validate the model across multiple cities
and climates, including the development of lightweight models for edge deployment.

Pranolo, et. al. (Urban Traffic Volume Prediction using LSTM and Bi-LSTM: Performance Evaluation on the Metro Interstate
Dataset)



238 ILKOM Jurnal Ilmiah Vol. 17, No. 3, December 2025, pp.227-240 E-ISSN 2548-7779

References

[1] M. Elassy, M. Al-Hattab, M. Takruri, and S. Badawi, “Intelligent transportation systems for sustainable smart
cities,” Transp. Eng., vol. 16, p. 100252, Jun. 2024, doi: 10.1016/j.treng.2024.100252.

[2] A. A. Musa, S. 1. Malami, F. Alanazi, W. Ounaies, M. Alshammari, and S. I. Haruna, “Sustainable Traffic
Management for Smart Cities Using Internet-of-Things-Oriented Intelligent Transportation Systems (ITS):
Challenges and Recommendations,” Sustainability, vol. 15, no. 13, p. 9859, Jun. 2023, doi: 10.3390/su15139859.

[3] K. Yao, L. Chen, and S. Chen, “Time-evolving traffic resilience performance forecasting during hazardous
weather toward proactive intervention,” Reliab. Eng. Syst. Saf., vol. 253, p. 110521, Jan. 2025, doi:
10.1016/j.ress.2024.110521.

[4] H. Huang, J. Chen, R. Sun, and S. Wang, “Short-term traffic prediction based on time series decomposition,”
Phys. A Stat. Mech. its Appl., vol. 585, p. 126441, Jan. 2022, doi: 10.1016/j.physa.2021.126441.

[5] C. Gijon, M. Toril, S. Luna-Ramirez, M. L. Mari-Altozano, and J. M. Ruiz-Avilés, “Long-Term Data Traffic
Forecasting for Network Dimensioning in LTE with Short Time Series,” Electronics, vol. 10, no. 10, p. 1151,
May 2021, doi: 10.3390/electronics10101151.

[6] D. Bouabdallaoui, T. Haidi, F. Elmariami, M. Derri, and E. M. Mellouli, “Application of four machine-learning
methods to predict short-horizon wind energy,” Glob. Energy Interconnect., vol. 6, no. 6, pp. 726-737, Dec.
2023, doi: 10.1016/j.gloei.2023.11.006.

[7]1 W. Lietal., “Location and time embedded feature representation for spatiotemporal traffic prediction,” Expert
Syst. Appl., vol. 239, p. 122449, Apr. 2024, doi: 10.1016/j.eswa.2023.122449.

[8] B. Medina-Salgado, E. Sanchez-DelaCruz, P. Pozos-Parra, and J. E. Sierra, “Urban traffic flow prediction
techniques: A review,” Sustain. Comput. Informatics Syst.,, vol. 35, p. 100739, Sep. 2022, doi:
10.1016/j.suscom.2022.100739.

[9] K. Nellore and G. Hancke, “A Survey on Urban Traffic Management System Using Wireless Sensor Networks,”
Sensors, vol. 16, no. 2, p. 157, Jan. 2016, doi: 10.3390/s16020157.

[10] A. Khan, M. M. Fouda, D.-T. Do, A. Almaleh, and A. U. Rahman, “Short-Term Traffic Prediction Using Deep
Learning Long Short-Term Memory: Taxonomy, Applications, Challenges, and Future Trends,” IEEE Access,
vol. 11, pp. 9437194391, 2023, doi: 10.1109/ACCESS.2023.3309601.

[11] Y. Mao, A. Pranolo, A. P. Wibawa, A. B. Putra Utama, F. A. Dwiyanto, and S. Saifullah, “Selection of Precise
Long Short Term Memory (LSTM) Hyperparameters based on Particle Swarm Optimization,” 2022 Int. Conf.
Appl. Artif. Intell. Comput., pp. 1114-1121, May 2022, doi: 10.1109/ICAAIC53929.2022.9792708.

[12] 1. D. Mienye, T. G. Swart, and G. Obaido, “Recurrent Neural Networks: A Comprehensive Review of
Architectures, Variants, and Applications,” Information, vol. 15, no. 9, p. 517, Aug. 2024, doi:
10.3390/info15090517.

[13] E. Elgohary, M. Galal, M. Aref, and M. Gharib, “Long Short-Term Memory and Gated Recurrent Unit for
Automated Deep Learning Prediction,” [JCI. Int. J. Comput. Inf, pp. 0-0, Jan. 2024, doi:
10.21608/ijci.2024.235027.1119.

[14] W. Shu, K. Cai, and N. N. Xiong, “A Short-Term Traffic Flow Prediction Model Based on an Improved Gate
Recurrent Unit Neural Network,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 9, pp. 16654-16665, Sep. 2022,
doi: 10.1109/T1TS.2021.3094659.

[15] C. Ounoughi and S. Ben Yahia, “Sequence to sequence hybrid Bi-LSTM model for traffic speed prediction,”
Expert Syst. Appl., vol. 236, p. 121325, Feb. 2024, doi: 10.1016/j.eswa.2023.121325.

[16] B. Naheliya, P. Redhu, and K. Kumar, “MFOA-Bi-LSTM: An optimized bidirectional long short-term memory
model for short-term traffic flow prediction,” Phys. A Stat. Mech. its Appl., vol. 634, p. 129448, Jan. 2024, doi:
10.1016/j.physa.2023.129448.

[17] A. Pranolo, S. Saifullah, A. Bella Utama, A. P. Wibawa, M. Bastian, and C. Hardiyanti P, “High-performance
traffic volume prediction: An evaluation of RNN, GRU, and CNN for accuracy and computational trade-offs,”
BIO Web Conf., vol. 148, p. 02034, Jan. 2024, doi: 10.1051/bioconf/202414802034.

Pranolo, et. al. (Urban Traffic Volume Prediction using LSTM and Bi-LSTM: Performance Evaluation on the Metro Interstate
Dataset)


https://doi.org/10.1016/j.treng.2024.100252
https://doi.org/10.3390/su15139859
https://doi.org/10.1016/j.ress.2024.110521
https://doi.org/10.1016/j.physa.2021.126441
https://doi.org/10.3390/electronics10101151
https://doi.org/10.1016/j.gloei.2023.11.006
https://doi.org/10.1016/j.eswa.2023.122449
https://doi.org/10.1016/j.suscom.2022.100739
https://doi.org/10.3390/s16020157
https://doi.org/10.1109/ACCESS.2023.3309601
https://doi.org/10.1109/ICAAIC53929.2022.9792708
https://doi.org/10.3390/info15090517
https://doi.org/10.21608/ijci.2024.235027.1119
https://doi.org/10.1109/TITS.2021.3094659
https://doi.org/10.1016/j.eswa.2023.121325
https://doi.org/10.1016/j.physa.2023.129448
https://doi.org/10.1051/bioconf/202414802034

E-ISSN 2548-7779 ILKOM Jurnal IImiah Vol. 17, No. 3, December 2025, pp.227-240 239

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

H. Alizadegan, B. Rashidi Malki, A. Radmehr, H. Karimi, and M. A. Ilani, “Comparative study of long short-
term memory (LSTM), bidirectional LSTM, and traditional machine learning approaches for energy
consumption prediction,” Energy Explor. Exploit.,, vol. 43, no. 1, pp. 281-301, Jan. 2025, doi:
10.1177/01445987241269496.

O. A. Wani et al., “Predicting rainfall using machine learning, deep learning, and time series models across an
altitudinal gradient in the North-Western Himalayas,” Sci. Rep., vol. 14, no. 1, p. 27876, Nov. 2024, doi:
10.1038/s41598-024-77687-X.

B.-L. Ye, M. Zhang, L. Li, C. Liu, and W. Wu, “A Survey of Traffic Flow Prediction Methods Based on Long
Short-Term Memory Networks,” IEEE Intell. Transp. Syst. Mag., vol. 16, no. 5, pp. 87-112, Sep. 2024, doi:
10.1109/MITS.2024.3400679.

C. Wu et al., “Time-Series Data-Driven PM2.5 Forecasting: From Theoretical Framework to Empirical
Analysis,” Atmosphere (Basel)., vol. 16, no. 3, p. 292, Feb. 2025, doi: 10.3390/atmos16030292.

H. Abbasimehr and R. Paki, “Improving time series forecasting using LSTM and attention models,” J. Ambient
Intell. Humaniz. Comput., vol. 13, no. 1, pp. 673-691, Jan. 2022, doi: 10.1007/s12652-020-02761-X.

N. Ranjan, S. Bhandari, H. P. Zhao, H. Kim, and P. Khan, “City-Wide Traffic Congestion Prediction Based on
CNN, LSTM and Transpose CNN,” |IEEE Access, vol. 8, pp. 81606-81620, 2020, doi:
10.1109/ACCESS.2020.2991462.

K. S. Kumar, K. Abirami, C. H. Sulochana, T. A. Kumar, S. A. Ajagbe, and C. Morris, “Multimodal Spatial-
Temporal Prediction and Classification Using Deep Learning,” in A, J., Abimannan, S., EI-Alfy, ES.M., Chang,
YS. (eds) Spatiotemporal Data Analytics and Modeling. Big Data Management, Singapore: Springer, 2024, pp.
89-114.

Y. Li, M. Liang, H. Li, Z. Yang, L. Du, and Z. Chen, “Deep learning-powered vessel traffic flow prediction with
spatial-temporal attributes and similarity grouping,” Eng. Appl. Artif. Intell., vol. 126, p. 107012, Nov. 2023,
doi: 10.1016/j.engappai.2023.107012.

T. Liu, A. Jiang, X. Miao, Y. Tang, Y. Zhu, and H. K. Kwan, “Graph-Based Dynamic Modeling and Traffic
Prediction of Urban Road Network,” IEEE Sens. J., vol. 21, no. 24, pp. 28118-28130, Dec. 2021, doi:
10.1109/JSEN.2021.3124818.

J. Chen, D. Li, G. Zhang, and X. Zhang, “Localized Space-Time Autoregressive Parameters Estimation for
Traffic Flow Prediction in Urban Road Networks,” Appl. Sci., vol. 8, no. 2, p. 277, Feb. 2018, doi:
10.3390/app8020277.

Y. He, P. Huang, W. Hong, Q. Luo, L. Li, and K.-L. Tsui, “In-Depth Insights into the Application of Recurrent
Neural Networks (RNNs) in Traffic Prediction: A Comprehensive Review,” Algorithms, vol. 17, no. 9, p. 398,
Sep. 2024, doi: 10.3390/a17090398.

H. Yang, W. Yu, G. Zhang, and L. Du, “Network-Wide Traffic Flow Dynamics Prediction Leveraging
Macroscopic Traffic Flow Model and Deep Neural Networks,” IEEE Trans. Intell. Transp. Syst., vol. 25, no. 5,
pp. 4443-4457, May 2024, doi: 10.1109/T1TS.2023.3329489.

K. Cao, T. Zhang, and J. Huang, “Advanced hybrid LSTM-transformer architecture for real-time multi-task
prediction in engineering systems,” Sci. Rep., vol. 14, no. 1, p. 4890, Feb. 2024, doi: 10.1038/s41598-024-55483-
X.

D. Salman, C. Direkoglu, M. Kusaf, and M. Fahrioglu, “Hybrid deep learning models for time series forecasting
of solar power,” Neural Comput. Appl., vol. 36, no. 16, pp. 9095-9112, Jun. 2024, doi: 10.1007/s00521-024-
09558-5.

B. Lim and S. Zohren, “Time-series forecasting with deep learning: a survey,” Philos. Trans. R. Soc. A Math.
Phys. Eng. Sci., vol. 379, no. 2194, p. 20200209, Apr. 2021, doi: 10.1098/rsta.2020.0209.

A. Boukerche and J. Wang, “Machine Learning-based traffic prediction models for Intelligent Transportation
Systems,” Comput. Networks, vol. 181, p. 107530, Nov. 2020, doi: 10.1016/j.comnet.2020.107530.

Pranolo, et. al. (Urban Traffic Volume Prediction using LSTM and Bi-LSTM: Performance Evaluation on the Metro Interstate

Dataset)


https://doi.org/10.1177/01445987241269496
https://doi.org/10.1038/s41598-024-77687-x
https://doi.org/10.1109/MITS.2024.3400679
https://doi.org/10.3390/atmos16030292
https://doi.org/10.1007/s12652-020-02761-x
https://doi.org/10.1109/ACCESS.2020.2991462
https://doi.org/10.1016/j.engappai.2023.107012
https://doi.org/10.1109/JSEN.2021.3124818
https://doi.org/10.3390/app8020277
https://doi.org/10.3390/a17090398
https://doi.org/10.1109/TITS.2023.3329489
https://doi.org/10.1038/s41598-024-55483-x
https://doi.org/10.1038/s41598-024-55483-x
https://doi.org/10.1007/s00521-024-09558-5
https://doi.org/10.1007/s00521-024-09558-5
https://doi.org/10.1098/rsta.2020.0209
https://doi.org/10.1016/j.comnet.2020.107530

240 ILKOM Jurnal Ilmiah Vol. 17, No. 3, December 2025, pp.227-240 E-ISSN 2548-7779

[34] K. Ibrahim Mohammad Ata, M. Khair Hassan, A. Ghany Ismaeel, S. Abdul Rahman Al-Haddad, T. Alquthami,
and S. Alani, “A multi-Layer CNN-GRUSKIP model based on transformer for spatial -TEMPORAL traffic flow
prediction,” Ain Shams Eng. J., p. 103045, Sep. 2024, doi: 10.1016/].asej.2024.103045.

[35] Z. Zhou and T. Zhan, “The Improved Bi-LSTM-Transformer Model and its Application,” in 2024 5th
International Conference on Computer, Big Data and Artificial Intelligence (ICCBD+AI), Nov. 2024, pp. 71—
75, doi: 10.1109/ICCBD-AI165562.2024.00019.

[36] J. Hogue, “Metro Interstate Traffic Volume.” 2019.

[37] B. Kovalerchuk and E. McCoy, “Explainable Machine Learning for Categorical and Mixed Data with Lossless
Visualization,” in Kovalerchuk, B., Nazemi, K., Andonie, R., Datia, N., Banissi, E. (eds) Artificial Intelligence
and Visualization: Advancing Visual Knowledge Discovery. Studies in Computational Intelligence, vol. 1126,
Cham: Springer, 2024, pp. 73-123.

[38] M. Shantal, Z. Othman, and A. A. Bakar, “A Novel Approach for Data Feature Weighting Using Correlation
Coefficients and Min—Max Normalization,” Symmetry (Basel)., vol. 15, no. 12, p. 2185, Dec. 2023, doi:
10.3390/sym15122185.

[39] R. L. Abduljabbar, H. Dia, and P.-W. Tsai, “Unidirectional and Bidirectional LSTM Models for Short-Term
Traffic Prediction,” J. Adv. Transp., vol. 2021, pp. 1-16, Mar. 2021, doi: 10.1155/2021/5589075.

Pranolo, et. al. (Urban Traffic Volume Prediction using LSTM and Bi-LSTM: Performance Evaluation on the Metro Interstate
Dataset)


https://doi.org/10.1016/j.asej.2024.103045
https://doi.org/10.1109/ICCBD-AI65562.2024.00019
https://doi.org/10.3390/sym15122185
https://doi.org/10.1155/2021/5589075

