MINIMALISASI DISTORSI DARI SEGMENTASI CITRA METODE OTSU MENGGUNAKAN FUZZY CLUSTERING

Junaidi Salat, Sayed Achmady

Abstract


Segmentasi citra merupakan bagian dari proses pengolahan citra yang memiliki kegunaan dalam pengambilan sebuah informasi dari citra seperti pencarian bagian mesin, pencarian manusia dan pencarian citra yang serupa. Secara umum, pendekatan segmentasi citra yang sering digunakan adalah melalui pendekatan intensitas, pendekatan warna dan pendekatan bentuk. Pada penelitian ini dilakukan peningkatan hasil segmentasi citra berupa pengurangan distorsi hasil segmentasi dengan menggunakan metode Otsu dan Fuzzy Clustering agar diperoleh citra yang lebih baik. Hasil pengujian segmentasi citra diperoleh nilai MSE yang terbaik adalah pada metode Otsu dengan nilai rata-rata MSE yaitu 2295,80 dan PSNR adalah 14,11 sedangkan untuk metode Fuzzy C Means 2313,23 dan nilai PSNR sebesar 13.70. 


Keywords


Segmentasi citra; Otsu; C Mean Clustering

Full Text:

PDF

References


Khushbu & Vats, I. 2017. Otsu Image Segmentation Algorithm: A Review. International Journal of Innovative Research in Computer and Communication Engineering Vol. 5, Issue 6, June 2017. M.Tech Student, Department of Computer Science and Engineering, CEC, Landran, Mohali, Punjab, India.

Zhou, C., Tian, L., Zhao, H. & Zhao, K. 2015. A Method of Two-Dimensional Otsu Image Threshold Segmentation Based on Improved Firefly Algorithm. Department of Electronic Engineering Shenyang University Liaoning Shenyang P.R. China. The 5th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems June 8-12, 2015, Shenyang, China.

Cheo, K.K.L, Du, Y., Zhou, G. & Chau, F.S. 2013. Post-Corrections of Image Distortions in a Scanning Grating-Based Spectral Line Imager. IEEE Photonics Technology Letters, VOL. 25, NO. 12, JUNE 15, 2013.

N. Otsu, ―A threshold selection method from graylevel histograms,‖ IEEE Trans. Syst. Man. Cybern., vol. 9, no. 1, pp. 62–66, 1979.

Vallepalli, S. S & Rajendran, M. M. 2012. Image De-noising using Mean Pixel Algorithms Corrupted with Photocopier Noise. International Journal. University of Michigan – (Ann Arbor; Dearborn) Signal and Image Processing laboratory – UM-Ann Arbor Digital Forensics laboratory – UM-Dearborn. IWSSIP 2012, 11-13 April 2012, Vienna, Austria.

Yelmanova, E & Romanyshyn, Y. 2017. Histogram-based Method for Image Contrast Enhancement. Department of ECT, Lviv Polytechnic National University, UKRAINE, University of Warmia and Mazury in Olsztyn, Poland.

Zhou, C., Tian, L., Zhao, H. & Zhao, K. 2015. A Method of Two-Dimensional Otsu Image Threshold Segmentation Based on Improved Firefly Algorithm. Department of Electronic Engineering Shenyang University Liaoning Shenyang P.R. China. The 5th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems June 8-12, 2015, Shenyang, China.

Honawadajkar, P. D. & Angal. 2015. Image Segmentation Based on OTSU Method with a New Iterative Triclass Thresholding Technique. International Journal of Emerging Technology and Advanced Engineering Certified Journal, Volume 5, Issue 9, September 2015. Dept. of ECE, JSPM’s BSIOTR, Pune, Maharashtra, India.

Guo, X & Guo B. 2014. A fuzzy filter for color images corrupted by mixed Noise. International Conference on Identification, Information and Knowledge in the Internet of Things. Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering Shenzhen University Shenzhen, China

DongjuLiu & JianYu. 2012. Otsu method and K-means. 2009 Ninth International Conference on Hybrid Intelligent Systems. Department of Computer Science Beijing Jiaotong University Beijing, China.

Ambarwati, A, Passarella, R. & Sutarno. 2016. Segmentasi Citra Digital Menggunakan Thresholding Otsu untuk Analisa Perbandingan Deteksi Tepi. Prosiding Annual Research Seminar 2016 6 Desember 2016, Vol 2 No. 1. Sistem Komputer , Fakultas Ilmu Komputer , Universitas Sriwijaya.

Tjokrowidjaya, C. C & Rustam, Z. 2014. Segmentasi Citra dengan Menggunakan Modifikasi Robust Fuzzy C-Means. Jurnal Departemen Matematika, Fakultas Matematika Ilmu Pengetahuan Alam Universitas Indonesia, Depok, Indonesia




DOI: http://dx.doi.org/10.33096/ilkom.v10i1.234.80-85

Article Metrics

This article has been viewed : 82 times
PDF files viewed : 83 times

Refbacks

  • There are currently no refbacks.


View Visitor
 
Free counters!

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.