Analisis Sentimen Pengguna Gojek Berdasarkan Ulasan pada App Store dengan Metode KNN, Naive Bayes, dan SVM


Arif Kurnia(1*); harlinda harlinda(2); Herdianti Darwis(3);

(1) Universitas Muslim Indonesia
(2) Universitas Muslim Indonesia
(3) Universitas Muslim Indonesia
(*) Corresponding Author

  

Abstract


Gojek adalah aplikasi layanan on-demand yang telah menjadi salah satu platform terbesar di Asia Tenggara dengan jutaan pengguna aktif dan 5 juta ulasan di App Store. Ulasan ini menjadi sumber informasi penting untuk mengevaluasi dan meningkatkan layanan. Penelitian ini bertujuan untuk menganalisis sentimen ulasan pengguna Gojek dengan mengelompokkan ulasan menjadi lima kelas sentimen: "Sangat Puas", "Puas", "Cukup", "Buruk", dan "Sangat Buruk". Metode yang digunakan meliputi K-Nearest Neighbors (KNN), Naive Bayes, dan Support Vector Machine (SVM). Setelah melakukan text preprocessing, ketiga metode tersebut dievaluasi berdasarkan accuracy, precision, recall, dan F1-score. Hasil penelitian menunjukkan bahwa model SVM dengan kernel Linear mencapai akurasi tertinggi sebesar 79.00%, diikuti kernel RBF dengan precision tertinggi sebesar 83.85%. Model Naive Bayes menunjukkan performa cukup baik dengan akurasi 78.00%, sementara KNN memiliki akurasi terendah sebesar 69.25%. Berdasarkan hasil ini, SVM, khususnya dengan kernel Linear dan RBF, terbukti menjadi metode paling efektif dalam menganalisis sentimen pengguna Gojek, memberikan wawasan yang lebih akurat untuk perbaikan layanan

Keywords


Sentiment Analysis; SVM; Naive Bayes; K-Nearest Neighbors; Gojek

  
  

Full Text:

PDF
  

Article Metrics

Abstract view: 14 times
PDF view: 7 times
     

Digital Object Identifier

doi  https://doi.org/10.33096/linier.v2i2.3132
  

Cite

References


S. Padmaja and S. S. Fatima, “Opinion mining and sentiment analysis-an assessment of peoples’ belief: A survey,” International Journal of Ad hoc, Sensor & Ubiquitous Computing, vol. 4, no. 1, p. 21, 2013.

G. Alexander, “Automating Large-scale Health Care Service Feedback Analysis: Sentiment Analysis and Topic Modeling Study,” JMIR Med Inform, vol. 10, no. 4, 2022, doi: 10.2196/29385.

M. A. Ganaie, “KNN weighted reduced universum twin SVM for class imbalance learning,” Knowl Based Syst, vol. 245, 2022, doi: 10.1016/j.knosys.2022.108578.

S. Mohsen, “Human Activity Recognition Using K-Nearest Neighbor Machine Learning Algorithm,” Smart Innovation, Systems and Technologies, vol. 262, pp. 304–313, 2022, doi: 10.1007/978-981-16-6128-0_29.

K. Hulliyah, “Analysis of Public Sentiment Using The K-Nearest Neighbor (k-NN) Algorithm and Lexicon Based on Indonesian Television Shows on Social Media Twitter,” 2022 10th International Conference on Cyber and IT Service Management, CITSM 2022, 2022, doi: 10.1109/CITSM56380.2022.9936011.

P. Subarkah, W. R. Damayanti, and R. A. Permana, “Comparison of correlated algorithm accuracy Naive Bayes Classifier and Naive Bayes Classifier for heart failure classification,” ILKOM Jurnal Ilmiah, vol. 14, no. 2, pp. 120–125, 2022.

I. Wickramasinghe and H. Kalutarage, “Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation,” Soft comput, vol. 25, no. 3, pp. 2277–2293, 2021.

C. U. Kumari, “An automated detection of heart arrhythmias using machine learning technique: SVM,” Mater Today Proc, vol. 45, pp. 1393–1398, 2021, doi: 10.1016/j.matpr.2020.07.088.

N. P. Arthamevia, “Aspect-Based Sentiment Analysis in Beauty Product Reviews Using TF-IDF and SVM Algorithm,” 2021 9th International Conference on Information and Communication Technology, ICoICT 2021, pp. 197–201, 2021, doi: 10.1109/ICoICT52021.2021.9527489.

A. P. Widyassari, “The 7-Phases Preprocessing Based On Extractive Text Summarization,” 2022 7th International Conference on Informatics and Computing, ICIC 2022, 2022, doi: 10.1109/ICIC56845.2022.10006998.

I. Ho, “Preprocessing Impact on Sentiment Analysis Performance on Malay Social Media Text,” Journal of System and Management Sciences, vol. 12, no. 5, pp. 73–90, 2022, doi: 10.33168/JSMS.2022.0505.

H. Darwis, N. Wanaspati, and S. Anraeni, “Support Vector Machine untuk Analisis Sentimen Masyarakat Terhadap Penggunaan Antibiotik di Indonesia,” The Indonesian Journal of Computer Science, vol. 12, no. 4, Aug. 2023, doi: 10.33022/ijcs.v12i4.3320.

A. Amelia, L. N. Hayati, dan H. Darwis, "Analisis Sentimen Ulasan Pengguna terhadap Aplikasi MyPertamina Menggunakan Metode Random Forest, SVM, dan Naïve Bayes," Universitas Muslim Indonesia, Makassar, Indonesia, 2023.

M. Potočár, “Comparison of Unigram, HMM, CRF and Brill’s Part-of-Speech Taggers Available in NLTK Library,” Conference of Open Innovation Association, FRUCT, vol. 2023, pp. 226–235, 2023, doi: 10.23919/FRUCT58615.2023.10143061.

M. Garg, “UBIS: Unigram Bigram Importance Score for Feature Selection from Short Text,” Expert Syst Appl, vol. 195, 2022, doi: 10.1016/j.eswa.2022.116563.

N. P. Arthamevia, “Aspect-Based Sentiment Analysis in Beauty Product Reviews Using TF-IDF and SVM Algorithm,” 2021 9th International Conference on Information and Communication Technology, ICoICT 2021, pp. 197–201, 2021, doi: 10.1109/ICoICT52021.2021.9527489.

H. Annur, “Klasifikasi Masyarakat Miskin Menggunakan Metode Naive Bayes,” ILKOM Jurnal Ilmiah, vol. 10, no. 2, pp. 160-165, 2018, doi: 10.33096/ilkom.v10i2.303.160-165.

E. Hossain, “Sentiment Polarity Detection on Bengali Book Reviews Using Multinomial Naïve Bayes,” Advances in Intelligent Systems and Computing, vol. 1299, pp. 281–292, 2021, doi: 10.1007/978-981-33-4299-6_23.

S. Chaudhury, “The Sentiment Analysis of Human Behavior on Products and Organizations using K-Means Clustering and SVM Classifier,” Proceedings of 3rd International Conference on Intelligent Engineering and Management, ICIEM 2022, pp. 610–615, 2022, doi: 10.1109/ICIEM54221.2022.9853128.

J. Polpinij, “A Comparative Study of Short Text Classification Methods for Bug Report Type Identification,” Proceedings - 2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics, RI2C 2022, pp. 27–33, 2022, doi: 10.1109/RI2C56397.2022.9910299.

Nurul Ehsan Ramli, Zainor Ridzuan Yahya, and Nor Azinee Said, “Confusion Matrix as Performance Measure for Corner Detectors,” Journal of Advanced Research in Applied Sciences and Engineering Technology, vol. 29, no. 1, pp. 256–265, Dec. 2022, doi: 10.37934/araset.29.1.256265.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Arif Kurnia, harlinda harlinda, Herdianti Darwis

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




Literatur Informatika dan Komputer

Diterbitkan oleh  Fakultas Ilmu Komputer
Website :  https://jurnal.fikom.umi.ac.id/index.php/LINIER/
Email : linier@umi.ac.id

 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0