Implementation of Fuzzy Logic in Fish Dryer Design


Nur Yanti(1*); Taufik Nur(2); Randis Randis(3);

(1) Politeknik Negeri Balikpapan
(2) Universitas Muslim Indonesia
(3) Politeknik Negeri Balikpapan
(*) Corresponding Author

  

Abstract


The fish drying process aims to preserve fish, so as to reduce losses due to the spoilage process. There is sunlight, the drying process does not experience obstacles, however if it is raining, it will take a longer time, and give a smell effect that disturbs the surrounding environment for a relatively long time. Fish dryer designed to work automatically, aims to speed up drying time using fuzzy logic, thus minimizing rot and air pollution due to the smell of the fish drying process. The design of the tool used experimental methods through literature study as a source of study, planning and manufacturing of fish drying equipment consists of hardware using the Arduino Mega 2560 microcontroller, temperature sensor of DHT 22, load cell sensor, humidity sensor, fan, heating element and LCD and software using the Fuzzy Mamdani method. The results obtained are the weight of the fish that has undergone a drying process using an automatic drying device, namely 500 grams, indicating that the drying process is 50% of the initial weight of 1000 grams, with a drying time of 4.48 hours, while drying time by drying or manually takes 45 hours. Shows the control system using fuzzy logic on fish drying equipment, speed up the drying time about 10 hours faster than the drying time by drying in the sun. So that it can increase the amount of dry fish production, reduce the smell in the environment around the drying, because the fish are in the dryer closed.


Keywords


fuzzy logic; microcontroller; fish dryer

  
  

Full Text:

PDF
  

Article Metrics

Abstract view: 479 times
PDF view: 200 times
     

Digital Object Identifier

doi  https://doi.org/10.33096/ilkom.v14i1.1092.39-51
  

Cite

References


H. I. Islam et al., Sistem Kendali Suhu Dan Pemantauan Kelembaban Udara Ruangan Berbasis Arduino Uno Dengan Menggunakan Sensor Dht22 Dan Passive Infrared (Pir), no. October, p. SNF2016-CIP-119-SNF2016-CIP-124, 2016.

M. N. kaliky Hj. A. Irmayani p , Asrul, Desain Bangun Ayakan Alat Mesin Tanaman Perkebunan, J. Telekomun. Kendali dan List., vol. 2, no. 1, pp. 1222, 2020.

S. F. Lukmansyah, S. Sumaryo, and E. Susanto, Pengembangan Sistem Pengeringan Ikan Asin Otomatis Dengan, e-Proceeding Eng., vol. 6, no. 2, pp. 27862793, 2019.

J. Hendrawan and D. Kurnia, Perancangan Dan Penerapan Sistem Pengering Ikan Otomatis Menggunakan Logika Fuzzy Pada Mikrokontroller Atmega32a, J. Ilm. Core It, vol. 6, no. x, pp. 140146, 2018.

R. Rais and N. Nurohim, Jemuran Ikan Asin Otomatis Berbasis Internet of Things Untuk Daerah Pesisir Pantai Pantura, Smart Comp Jurnalnya Orang Pint. Komput., vol. 9, no. 1, pp. 2225, 2020.

S. W. Murti, B. M. Basuki, and Sugiono, MODEL PENGERING IKAN ASIN BERBASIS IoT SEBAGAI ALAT ALTERNATIF DIMUSIM HUJAN DALAM SKALA HOME INDUSTRI, pp. 111.

M. Alexander, R. Rinaldi, Satria, and I. Priyadi, Perancangan Modul Pengering Ikan Putaran Rak Vertikal Berbasis Mikrokontroller, Pros. Semin. Nas. Tek. Elektro, vol. 24, pp. 9195, 2017.

R. Pramana, K. Ilham, S. Nugraha, M. Otong, and D. Aribowo, Perancangan Perangkat Pengering Ikan Otomatis Skala Mini, J. Sustain. J. Has. Penelit. dan Ind. Terap., vol. 8, no. 2, pp. 6574, 2019.

T. 1, R. Arief2, W. Widodo3, and Farida4, Rancang Bangun Pengering Ikan Menggunakan Mikrokontroler Berbasis Web, Semin. Nas. Sains , pp. 239246, 2020.

G. Dewantoro, B. E. Nugraha, and F. D. Setiaji, A Fuzzy Logic-Based Automation toward Intelligent Air Conditioning Systems, Kinet. Game Technol. Inf. Syst. Comput. Network, Comput. Electron. Control, vol. 4, pp. 335344, 2020.

F. Fahmizal, T. R. Orlando, B. B. Murti, M. Budiyanto, and A. Mayub, Kendali Logika Fuzzy pada Sistem Electronic Control Unit (ECU) Air Conditioner Mobil, J. Teknol. Inf. dan Ilmu Komput., vol. 6, no. 1, p. 25, 2019.

N. Yanti, F. Z. Rahman, and T. Nur, Rancang Bangun Sistem Pendeteksi Kebakaran Dini Berbasis Logika Fuzzy Menggunakan Multisensor, J. Ind. Eng. Manag., vol. 4, no. 2, pp. 4657, 2019.

A. R. Al Tahtawi and R. Kurniawan, PH control for deep flow technique hydroponic IoT systems based on fuzzy logic controller, J. Teknol. dan Sist. Komput., vol. 8, no. 4, pp. 323329, 2020.

Y. Yanitasari, D. Dedih, and U. Mustofa, Perencanaan Anggaran Pinjaman Dengan Prediksi Regresi Linier Sederhana Dan Optimasi Menggunakan Metode Fuzzy Tsukamoto, Ilk. J. Ilm., vol. 11, no. 3, pp. 206213, 2019.

N. Yanti, T. Nur, and Q. Hidayati, Blind peoples direction support system using ultrasonic, color sensor with fuzzy logic, IOP Conf. Ser. Mater. Sci. Eng., vol. 885, no. 1, 2020.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Nur Yanti, Taufik Nur, Randis Randis

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.