Predicting the success of the government’s program of lomaya (Regional PKH) in reducing poverty


Ruhmi Sulaehani(1); Marniyati Husain Botutihe(2*);

(1) Universitas Pohuwato
(2) Universitas Pohuwato
(*) Corresponding Author

  

Abstract


Poverty reduction is one indicator of the success of development. The form of support from the Pohuwato Regency Government through the Social Service is to organize PKH-D, which is known as LOMAYA. It is one of the implementations of the Community Movement Towards Independent Prosperity (Gerakan Masyarakat Menuju Sejahtera Mandiri). This research was conducted to assist the government in predicting the level of development success indicated by the satisfaction of beneficiaries of lomaya. The method employed was the Naïve Bayes method and forward feature selection. The research data was obtained from a survey of lomaya beneficiaries in the last two years. The accuracy result obtained using the Naïve Bayes algorithm was 94.19%, while Naïve Bayes with the Forward Selection feature was only 94.03%. Therefore, the Naïve Bayes algorithm method is better than the Forward Selection based Naïve Bayes algorithm. Forward selection does not improve accuracy because the selection process causes many attributes to be discarded because they are considered irrelevant. This happened because of the inaccuracy of the data after being selected for its attributes using the Forward Selection feature resulting 1 attribute  only as a determinant.


  
  

Full Text:

PDF
  

Article Metrics

Abstract view: 166 times
PDF view: 100 times
     

Digital Object Identifier

doi  https://doi.org/10.33096/ilkom.v14i3.1149.323-328
  

Cite

References


Dinas Sosial Kabupaten Pohuwato “juknis lomaya 2020”. 2020.

Syaharuddin, E. Pujiana, I. P. Sari, V. M. Mardika, and M. Putri, “Analisis algoritma Back Propagation dalam prediksi angka kemiskinan di Indonesia,” J. Pendidik. Berkarakter, vol. 3, no. 1, pp. 11–17, 2020.

H. S. Pakpahan, Y. Basani, and R. R. Hariani, “Prediksi jumlah penduduk miskin Kalimantan Timur menggunakan Single dan Double Exponential Smoothing,” Inform. Mulawarman J. Ilm. Ilmu Komput., vol. 15, no. 1, pp. 47–51, 2020. 5, pp. 930-936, Oct. 2020.

A. Karim, U. Islam, and N. Walisongo, “Perbandingan prediksi kemiskinan di Indonesia menggunakan Support Vector Machine ( SVM ) dengan Regresi Linear,” vol. 6, no. 1, pp. 107–112, 2020.

R. H. Purba, M. Zarlis, and I. Gunawan, “TIN : Terapan Informatika Nusantara algoritma Backpropagation dalam memprediksi jumlah angka kemiskinan di Provinsi Sumatera Utara TIN : Terapan Informatika Nusantara,” vol. 1, no. 1, pp. 55–63, 2020.

S. A. Suleman and R. Resnawaty, “Program Keluarga Harapan (Pkh): antara perlindungan sosial dan pengentasan kemiskinan,” Pros. Penelit. dan Pengabdi. Kpd. Masy., vol. 4, no. 1, p. 88, 2017. Mojokerto) The Policy Implementation of

D. Wintana, H. Hikmatulloh, N. Ichsan, J. J. Purnama, and A. Rahmawati, “Klasifikasi penentuan penerima manfaat program keluarga harapan (PKH) menggunakan algoritma C5.0 (Studi kasus: Desa Sukamaju, Kec.Kadudampit),” Klik - Kumpul. J. Ilmu Komput., vol. 6, no. 3, p. 254, 2019.

E. Fitriani, “Perbandingan algoritma C4.5 dan Naïve Bayes untuk menentukan kelayakan penerima bantuan program keluarga harapan,” Sistemasi, vol. 9, no. 1, p. 103, 2020.

A. A. Sidiq and F. W. Christanto, “Algoritma Naive Bayes untuk penentuan Pkh (Program Keluarga Harapan) verbasis Sistem Pendukung Keputusan,” Riptek, vol. 14, no. 1, pp. 65–71, 2020.

T. H. Apandi, C. A. Sugianto, and C. R. Service, “Algoritma Naive Bayes untuk prediksi kepuasan pelayanan perekaman e-KTP ( Naive Bayes Algorithm for Satisfaction Prediction of e-ID,” vol. 7, no. November, pp. 125–128, 2019.

Noviantoro, Tri, and Jen-Peng Huang. "Investigating airline passenger satisfaction: Data mining method." Research in Transportation Business & Management 43 (2022): 100726.

S. F. Shetu, I. Jahan, M. M. Islam, R. Ara Hossain, N. N. Moon and F. Narin Nur, "Predicting satisfaction of online banking system in Bangladesh by Machine Learning," 2021 International Conference on Artificial Intelligence and Computer Science Technology (ICAICST), 2021, pp. 223-228, doi: 10.1109/ICAICST53116.2021.9497796.

M. Siddik, Y. Desnelita, and Gustientiedina, “Penerapan Naïve Bayes untuk memprediksi tingkat kepuasan mahasiswa terhadap pelayanan akademis,” J. Infomedia, vol. 2, no. 4, pp. 89–93, 2019.

K. A. Aeni, “Prediksi kepuasan layanan akademik menggunakan algoritma Naïve Bayes,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 7, no. 3, pp. 601–609, 2020.

M. G. Sadewo, A. P. Windarto, and I. S. Damanik, “Algoritma Naïve Bayes dalam memprediksi kepuasan nasabah,” Pros. Semin. Nas. Ris. Inf. Sci., vol. 1, no. September, p. 318, 2019.

A. R. Damanik, S. Sumijan, and G. W. Nurcahyo, “Prediksi tingkat kepuasan dalam pembelajaran daring menggunakan algoritma Naïve Bayes,” J. Sistim Inf. dan Teknol., vol. 3, pp. 88–94, 2021.

J. A. Baba, G. Yanti, K. Sari, S. Pahu, and R. H. Saputra, “Penerapan Algoritma Decision Tree dan Feature Selection Forward untuk Analisis Kepuasan Pemasang Iklan Terhadap Pelayanan Iklan,” vol. 3, no. 3, pp. 133–139, 2018.

A. Prasetyo, “ALGORITMA NAÏVE BAYES BERBASIS FORWARD SELECTION PADA PREDIKSI KELULUSAN TEPAT WAKTU” November 2017, 2018.

D. Berrar, “Bayes’ theorem and naive bayes classifier,” Encycl. Bioinforma. Comput. Biol. ABC Bioinforma., vol. 1–3, no. January 2018, pp. 403–412, 2018.

M. Guntur, J. Santony, and Y. Yuhandri, “Prediksi Harga Emas dengan Menggunakan Metode Naïve Bayes dalam Investasi untuk Meminimalisasi Resiko,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 2, no. 1, pp. 354–360, 2018.

M. R. Fanani, “Algoritma Naïve Bayes Berbasis Forward Selection Untuk Prediksi Bimbingan Konseling Siswa,” J. DISPROTEK, vol. 11, no. 1, pp. 13–22, 2020.

J. Nasional and S. Informasi, “Implementasi Forward Selection dan Bagging untuk Prediksi Kebakaran Hutan Menggunakan Algoritma Naïve Bayes,” vol. 01, pp. 1–8, 2022.

F. Nuraeni, Y. H. Agustin, S. Rahayu, D. Kurniadi, Y. Septiana and S. M. Lestari, "Student Study Timeline Prediction Model Using Naïve Bayes Based Forward Selection Feature," 2021 International Conference on ICT for Smart Society (ICISS), 2021, pp. 1-5, doi: 10.1109/ICISS53185.2021.9532502.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Ruhmi Sulaehani, Marniyati Husain Botutihe

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.