Design of library noise detection tools based on voice pressure parameters

Yuda Irawan(1*); Refni Wahyuni(2); Hasnor Khotimah(3); Herianto -(4); Bambang Kurniawan(5); Haris Tri Saputra(6); Yulisman Yulisman(7); Abdi Muhaimin(8); Reno Renaldi(9); Rahmaddeni Rahmaddeni(10);

(1) Universitas Hang Tuah Pekanbaru
(2) Universitas Hang Tuah Pekanbaru
(3) Universitas Hang Tuah Pekanbaru
(4) Universitas Hang Tuah Pekanbaru
(5) Universitas Hang Tuah Pekanbaru
(6) Universitas Hang Tuah Pekanbaru
(7) Universitas Hang Tuah Pekanbaru
(8) Universitas Hang Tuah Pekanbaru
(9) Universitas Hang Tuah Pekanbaru
(10) STMIK Amik Riau
(*) Corresponding Author



A library visitor would want a quiet atmosphere without noise when in the library so that he can concentrate when reading a book. However, not all visitors come to the library to read books; some want to chat and use free Wi-Fi or other, so it disturbs the concentration of other visitors who read books. Therefore, it is necessary to have a tool to detect sound pressure or sound based on the sound level and the sound produced in a library based on the noise level limit in the library, namely 45-55 dB (desible). This tool is designed based on a microcontroller where the definition of a microcontroller is a complete microprocessor system contained in a microcontroller chip which is different from the multi-purpose microprocessor used in a PC because a microcontroller generally already includes the minimum system supporting components of a microprocessor, namely memory, and programming. This tool can help officers monitor the library room for noise that can interfere with the concentration and comfort of library visitors. Based on the results of testing, the overall system is as desired, including the noise detection tool can work in an integrated system, where when the sound sensor detects a noise that exceeds the sound limit, the buzzer will sound, the red led light turns on, the sound module issues a voice message pre-recorded and also the device can be controlled or monitored from the web application.


Noise Detection;Library;Voice Pressure Parameters;Nodemcu Esp8266


Full Text:


Article Metrics

Abstract view: 522 times
PDF view: 109 times

Digital Object Identifier




J. Rajagukguk and N. E. Sari, “Detection system of Sound Noise Level (SNL) based on condenser microphone sensor,” J. Phys. Conf. Ser., vol. 970, no. 1, 2018, doi: 10.1088/1742-6596/970/1/012025.

S. R. U. . S. Theodorus S Kalengkongan, Dringhuzen J. Mamahit, “Rancang Bangun Alat Deteksi Kebisingan Berbasis Arduino Uno,” J. Tek. Elektro dan Komput., vol. 7, no. 2, pp. 183–188, 2018.

G. Khan and R. Bhatti, “An analysis of collection development in the university libraries of Pakistan,” Collect. Build., vol. 35, no. 1, pp. 22–34, 2016, doi: 10.1108/CB-07-2015-0012.

L. Chapter, “A Happy Medium: Academic Library Noise from the Perspectives of Students and Librarians Elizabeth Layton and Mark Love, Nicholls State University,” vol. 6, no. 1, pp. 32–53.

A. S. Aremu and A. A. Adedeji, “Assessing the Noise Pressure Level in Libraries ’ Study Rooms in Nigeria – A Tropical Region,” no. November 2015, 2012.

Nurwati, “Pendeteksi tingkat kebisingan dan pemberi peringatan pada perpustakaan berbasis Arduino,” Semin. Nas. R., vol. 1, no. 1, pp. 1–4, 2018.

K. F. A. Widyadana, “Perancangan sistem kebisingan suara dengan sound sensor mic berbasis Arduino,” Researchgate.Net, no. April, 2021, [Online]. Available:

S. Amarta, A. G. Putrada, and ..., “Asesmen kebisingan di open library Telkom University menggunakan sistem monitoring suara berbasis Iot,” eProceedings …, vol. 6, no. 1, pp. 2057–2064, 2019, [Online]. Available:

A. A. Jaber and R. Bicker, “Real-Time wavelet analysis of a vibration signal based on Arduino-UNO and LabVIEW,” Int. J. Mater. Sci. Eng., no. January 2015, pp. 66–70, 2015, doi: 10.12720/ijmse.3.1.66-70.

Y. A. Badamasi, “The working principle of an Arduino,” Proc. 11th Int. Conf. Electron. Comput. Comput. ICECCO 2014, 2014, doi: 10.1109/ICECCO.2014.6997578.

I. I. M. Abu Sulayman, S. H. A. Almalki, and M. S. Soliman, “Design and implementation of a reliable wireless real-time home automation system based on Arduino Uno single-board microcontroller,” Prog. Electromagn. Res. Symp., vol. 2015-January, no. January 2015, pp. 2760–2764, 2015.

M. Magdin, Š. Koprda, and L. Ferenczy, “Biometrics authentication of fingerprint with using fingerprint reader and microcontroller Arduino,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 16, no. 2, pp. 755–765, 2018, doi: 10.12928/TELKOMNIKA.v16i2.7572.

L. M. Herger and M. Bodarky, “Engaging students with open source technologies and Arduino,” ISEC 2015 - 5th IEEE Integr. STEM Educ. Conf., pp. 27–32, 2015, doi: 10.1109/ISECon.2015.7119938.

Y. Parihar, “Internet of Things and Nodemcu: A review of use of Nodemcu ESP8266 in IoT products,” J. Emerg. Technol. Innov. Res., vol. 6, no. 6, pp. 1085–1086, 2019, [Online]. Available:

A. D. Hidayat, B. Sudibya, and C. B. Waluyo, “Pendeteksi tingkat kebisingan berbasis Internet of Things sebagai media kontrol kenyamanan ruangan perpustakaan,” Avitec, vol. 1, no. 1, pp. 99–109, 2019, doi: 10.28989/avitec.v1i1.497.


  • There are currently no refbacks.

Copyright (c) 2022 Yuda Irawan, Refni Wahyuni, Hasnor Khotimah, Herianto -, Bambang Kurniawan, Haris Tri Saputra, Yulisman Yulisman, Abdi Muhaimin, Reno Renaldi, Rahmaddeni Rahmaddeni

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.