Analysis of Stroke Classification Using Random Forest Method


Muhammad Firdaus Banjar(1*); Irawati Irawati(2); Fitriyani Umar(3); Lilis Nur Hayati(4);

(1) 
(2) Universitas Muslim Indonesia
(3) Universitas Muslim Indonesia
(4) Universitas Muslim Indonesia
(*) Corresponding Author

  

Abstract


Stroke is a disease in which the sufferer experiences or experiences a rupture of a blood vessel in the brain so that the brain does not get a blood supply that provides oxygen. Patients who suffer from stroke will experience cognitive disorders ranging from decreased consciousness, visuospatial disorders, non-verbal learning disorders, communication disorders, and reduced levels of patient attention. Data from the World Stroke Organization shows that there are 13.7 million new stroke cases every year, and about 5.5 million deaths occur due to stroke. This research aims to analyze the attributes of any variables that affect the classification of strike disease and to test the performance of stroke classification in the form of accuracy, precision, recall, and f-measure. The method used is a random forest using a tree, namely 50, 100, 200, and 500. The classification of stroke is divided into stroke and no stroke. The data used is 5110, divided into 70% training data and 30% testing data. The results showed that the performance of a random forest using 100 trees was better than using 50, 200, and 500 trees, with an accuracy value of 86.82%, a precision of 15.76%, a recall of 38.15%, and an f1-score 22.30% after doing SMOTE.


Keywords


Atribut; Random Forest; SMOTE; Stroke

  
  

Full Text:

PDF
  

Article Metrics

Abstract view: 45 times
PDF view: 13 times
     

Digital Object Identifier

doi  https://doi.org/10.33096/ilkom.v14i3.1252.186-193
  

Cite

References


V. Adelina, D. E. Ratnawati, and M. A. Fauzi, “Klasifikasi tingkat risiko penyakit stroke menggunakan metode GA-Fuzzy Tsukamoto,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 9, pp. 3015–3021, 2018.

M. S. Fadlilah, R. C. Wihandika, and B. Rahayudi, “Klasifikasi penurunan fungsi kognitif pasien stroke menggunakan metode Klasifikasi Random Forest,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 3, pp. 3005–3013, 2019.

R. Aprianda, “Stroke: Don’t be the One,” Pusat Data dan Informasi Kementrian Kesehatan RI, pp. 1–10, 2019.

L. Breiman, “Random Forests,” Kluwer Academic Publishers, pp. 6–32, 2021.

R. Siringoringo, “Klasifikasi data tidak seimbang menggunakan algoritma SMOTE dan K-Nearest Neighbor,” Journal Information System Development (ISD), vol. 3, no. 1, pp. 44–49, 2018.

L. Andiani, Sukemi, and D. P. Rini, “Analisis penyakit jantung menggunakan metode KNN dan Random Forest,” Prosiding Annual Research Seminar 2019 Computer Science and ICT, vol. 5, no. 1, pp. 165–169, 2019.

M. R. Amiarrahman and T. Handhika, “Analisis dan implementasi algoritma klasifikasi Random Forest dalam pengenalan Bahasa Isyarat Indonesia (BISINDO),” Seminar Nasional Inovasi Teknologi, pp. 83–88, 2018.

W. Apriliah, I. Kurniawan, M. Baydhowi, and T. Haryati, “Prediksi kemungkinan diabetes pada tahap awal menggunakan algoritma klasifikasi Random Forest,” SISTEMASI: Jurnal Sistem Informasi, vol. 10, no. 1, pp. 163–171, 2021.

L. Fadilah, “Klasifikasi Random Forest pada data imbalanced,” Skripsi, Universitas Islam Negeri Syarif Hidayatullah , Jakarta, 2018.

Nidhomuddin and B. W. Otok, “Random Forest dan Multivariate Adaptive Regresion Spline (MARS) binary response untuk klasifikasi penderita HIV/AIDS di Surabaya,” Jurnal Statistika Universitas Muhammadiyah Semarang, vol. 1, no. 3, pp. 59–57, 2015.

A. W. A. Ruslam, “Analisis keberlanjutan pengguna jala menggunakan factor analysis,” Skripsi, Universitas Islam Indonesia, Yogyakarta, 2021.

Mustikasari and ST. A. D. Ghani, “Analisis performa klasifikasi algoritma pada pendeteksian penyakit kanker dengan partition membership,” In SISITI: Seminar Ilmiah Sistem Informasi dan Teknologi Informasi, vol. 10, no. 1, pp. 117–126, 2021.

M. D. Purbolaksono, M. I. Tantowi, A. I. Hidayat, and Adiwijaya, “Perbandingan Support Vector Machine dan Modified Balanced Random Forest dalam deteksi pasien penyakit diabetes,” JURNAL RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 2, pp. 393–399, 2021.

Fedesario, “Stroke Prediction Dataset,”, Kaggle, 7 juni 2021, [Online]. Tersedia: https://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset [Diakses: 2 September 2021]

A. Cintami, “Mengenal Random Forest dengan Rstudio,”, Medium, 18 juli 2020, [Online]. Tersedia: https://medium.com/@17611104_/mengenal-random-forest-dengan-rstudio-39e9f2c0c9df [Diakses: 5 Agustus 2021]


Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Muhammad Firdaus Banjar

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.