Classification of stroke patients using data mining with adaboost, decision tree and random forest models

Bahtiar Imran(1); Erfan Wahyudi(2*); Ahmad Subki(3); Salman Salman(4); Ahmad Yani(5);

(1) Universitas Teknologi Mataram
(2) Institut Pemerintahan Dalam Negeri
(3) Universitas Teknologi Mataram
(4) Universitas Teknologi Mataram
(5) Universitas Teknologi Mataram
(*) Corresponding Author



A stroke is a fatal disease that usually occurs to the people over the age of 65. The treatment progress of the medical field is growing rapidly, especially with the technological advance, with the emergence of various medical record data sets that can be used in medical records to identify trends in these data sets using data mining. The purpose of this study was to propose a model to classify stroke survivors using data mining, by utilizing data from the kaggle sharing dataset. The models proposed in this study were AdaBoost, Decision Tree and Random Forest, evaluation results using Confusion Matrix and ROC Analysis. The results obtained were that the decision tree model was able to provide the best accuracy results compared to  the other models, which was 0.953 for Number of Folds 5 and 10. From the results of this study, the decision tree model was able to provide good classification results for stroke sufferers.


Data Mining; AdaBoost; Decision Tree; Random Forest; Stroke.


Full Text:


Article Metrics

Abstract view: 273 times
PDF view: 134 times

Digital Object Identifier




et al., “Deep learning-based detection and segmentation of diffusion abnormalities in acute ischemic stroke,” Commun. Med., vol. 1, no. 1, pp. 1–18, 2021, doi: 10.1038/s43856-021-00062-8.

H. K. V, H. P, G. Gupta, P. Vaishak, and P. K. B, “Stroke prediction using Machine Learning algorithms,” Int. J. Innov. Res. Eng. Manag., vol. 8, no. 4, pp. 553–558, 2021, doi: 10.1109/Confluence52989.2022.9734197.

N. H. Ali, A. R. Abdullah, N. M. Saad, A. S. Muda, T. Sutikno, and M. H. Jopri, “Brain stroke computed tomography images analysis using image processing: A review,” IAES Int. J. Artif. Intell., vol. 10, no. 4, pp. 1048–1059, 2021, doi: 10.11591/IJAI.V10.I4.PP1048-1059.

L. Amini et al., “Prediction and control of stroke by data mining,” Int. J. Prev. Med., vol. 4, pp. S245–S249, 2013.

A. S, J. V, H. N, and D. M, “An artificial intelligence approach for predicting different types of stroke,” Int. J. Eng. Res. Technol., vol. 8, no. 12, pp. 1858–1861, 2019, doi: 10.1109/ICICCT.2018.8473057.

Y. Yu et al., “Use of Deep Learning to Predict Final Ischemic Stroke Lesions from Initial Magnetic Resonance Imaging,” JAMA Netw. Open, vol. 3, no. 3, pp. 1–13, 2020, doi: 10.1001/jamanetworkopen.2020.0772.

T. Badriyah, D. B. Santoso, I. Syarif, and D. R. Syarif, “Improving stroke diagnosis accuracy using hyperparameter optimized deep learning,” Int. J. Adv. Intell. Informatics, vol. 5, no. 3, pp. 256–272, 2019, doi: 10.26555/ijain.v5i3.427.

S. Surya, B. Yamini, T. Rajendran, and K. E. Narayanan, “A Comprehensive Method for Identification of Stroke using Deep Learning,” Turkish J. Comput. Math. Educ., vol. 12, no. 7, pp. 647–652, 2021.

A. B. URAL, “Computer Aided Deep Learning Based Assessment of Stroke From Brain Radiological CT Images,” Eur. J. Sci. Technol., no. 34, pp. 42–52, 2022, doi: 10.31590/ejosat.1063356.

S. Zhang, S. Xu, L. Tan, H. Wang, and J. Meng, “Stroke Lesion detection and analysis in MRI images based on Deep Learning,” J. Healthc. Eng., vol. 2021, 2021, doi: 10.1155/2021/5524769.

T. Tazin, M. N. Alam, N. N. Dola, M. S. Bari, S. Bourouis, and M. Monirujjaman Khan, “Stroke disease detection and prediction using Robust Learning Approaches,” J. Healthc. Eng., vol. 2021, 2021, doi: 10.1155/2021/7633381.

J. Yu, S. Park, S. H. Kwon, C. M. B. Ho, C. S. Pyo, and H. Lee, “AI-based stroke disease prediction system using real-time electromyography signals,” Appl. Sci., vol. 10, no. 19, 2020, doi: 10.3390/app10196791.

O. Almadani and R. Alshammari, “Prediction of stroke using data mining classification techniques,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 1, pp. 457–460, 2018, doi: 10.14569/IJACSA.2018.090163.

A. K. Arslan, C. Colak, and M. E. Sarihan, “Different medical data mining approaches based prediction of ischemic stroke,” Comput. Methods Programs Biomed., vol. 130, pp. 87–92, 2016, doi: 10.1016/j.cmpb.2016.03.022.

M. W. Hassan, A. Keshk, A. A. El-atey, and E. Alfeky, “Brain Stroke detection using Tensor Factorization and Machine Learning Models,” Int. J. Eng. Technol. Manag. Res., vol. 8, no. 8, pp. 1–12, 2021, doi: 10.29121/ijetmr.v8.i8.2021.1006.

E. M. Alanazi, A. Abdou, and J. Luo, “Predicting risk of stroke from lab tests using machine learning algorithms: Development and evaluation of prediction models,” JMIR Form. Res., vol. 5, no. 12, pp. 1–10, 2021, doi: 10.2196/23440.

A. Kshirsagar, H. Goyal, S. Loya, and A. Khade, “Brain stroke prediction portal using Machine Learning,” Int. J. Res. Eng. Appl. Manag., vol. 07, no. 03, 2021.

M. G. M and D. P. M. C, “IRJET- Stroke Type Prediction using Machine Learning and Artificial Neural Networks,” Int. Res. J. Eng. Technol., vol. 8, no. 6, 2021.

T. S. Heo et al., “Prediction of stroke outcome using natural language processing-based machine learning of radiology report of brain MRI,” J. Pers. Med., vol. 10, no. 4, pp. 1–11, 2020, doi: 10.3390/jpm10040286.

G. Sailasya and G. L. A. Kumari, “Analyzing the performance of stroke prediction using ML classification Algorithms,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 6, pp. 539–545, 2021, doi: 10.14569/IJACSA.2021.0120662.

E. R. Kaur and V. Chopra, “Implementing Adaboost and Enhanced Adaboost algorithm in Web Mining,” Int. J. Adanced Res. Comput. Commun. Eng., vol. 4, no. 7, pp. 306–311, 2015, doi: 10.17148/IJARCCE.2015.4771.

H. H. Patel and P. Prajapati, “Study and Analysis of Decision Tree Based Classification Algorithms,” Int. J. Comput. Sci. Eng., vol. 6, no. 10, pp. 56–61, 2018.

B. Imran, Zaeniah, Sriasih, S. Erniwati, and Salman, “Data Mining using a Support Vector Machine , Decision Tree , Logistic Regression and Random Forest for,” J. INFOKUM, vol. 10, no. 2, pp. 792–802, 2022.

B. Imran, H. Hambali, A. Subki, Z. Zaeniah, A. Yani, and M. R. Alfian, “Data Mining using Random Forest, Naïve Bayes, and Adaboost Models for Prediction and Classification of Benign and Malignant Breast Cancer,” J. Pilar Nusa Mandiri, vol. 18, no. 1, pp. 37–46, 2022, doi: 10.33480/pilar.v18i1.2912.

S. Kodati and R. Vivekanandam, “Analysis of Heart Disease using in Data Mining Tools Orange and Weka,” Glob. J. Comput. Sci. Technol. C Softw. Data Eng., vol. 18, no. 1, pp. 16–22, 2018.

M. S. Kukasvadiya, D. Nidhi, and H. Divecha, “Analysis of data using data mining tool orange,” Int. J. Eng. Dev. Res., vol. 5, no. 2, pp. 1836–1840, 2017, [Online]. Available:

G. Manimannan, R. L. Priya, and C. A. Kumar, “Application of orange data mining approach of Argiculture Productivity Index Performance in Tamilnadu,” Int. J. Sci. Innov. Math. Res., vol. 7, no. 8, pp. 8–16, 2019, doi: 10.20431/2347-3142.0708003.

V. Chaurasia, S. Pal, and B. B. Tiwari, “Prediction of benign and malignant breast cancer using data mining techniques,” J. Algorithms Comput. Technol., vol. 12, no. 2, pp. 119–126, 2018, doi: 10.1177/1748301818756225.

S. M. Ayyoubzadeh, A. Almasizand, and ..., “Early breast cancer prediction using dermatoglyphics: data mining pilot study in a General Hospital in Iran,” Heal. Educ. …, vol. 9, no. 3, pp. 279–285, 2021, [Online]. Available:


  • There are currently no refbacks.

Copyright (c) 2022 Bahtiar Imran, Erfan Wahyudi, Ahmad Subki, Salman Salman, Ahmad Yani

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.