Sentiment analysis of customer satisfaction levels on smartphone products using Ensemble Learning

Muhammad Ma’ruf(1); Adam Prayogo Kuncoro(2); Pungkas Subarkah(3*); Faridatun Nida(4);

(1) Universitas Amikom Purwokerto
(2) Universitas Amikom Purwokerto
(3) Universitas Amikom Purwokerto
(4) Universitas Amikom Purwokerto
(*) Corresponding Author



Increasingly sophisticated technological developments create new ways for people to conduct trading business. An example of this technology application is the use of e-commerce. However, there are conditions where the seller cannot measure the level of satisfaction and identify problems experienced by his customers if it is only based on the rating as the case in smartphones transactions. Therefore, a solution is needed to create a system that can filter negative and positive comments. This study offers a solution to address this issue by using machine learning employing the K-Nearest Neighbors, SVM, and Naive Bayes algorithms with hyperparameters from previous studies. This study applied the ensemble learning method with the Voting Classifier technique, which is an algorithm to combine several algorithms that have been made. From the test results, the highest accuracy was obtained by SVM with an accuracy value of 91.18% while the ensemble learning method obtained an accuracy value of 89.22%. The difference in the accuracy of training and testing for SVM and ensemble learning method is 7.1% and 4% respectively. These results indicate that the ensemble learning method can help improve the performance of sentiment analysis algorithms for comments on smartphone products.


E-commerce; Ensemble Learning; K-Nearest Neighbors; Machine Learning; Naive Bayes; Smartphone; SVM; Voting Classifier


Full Text:


Article Metrics

Abstract view: 745 times
PDF view: 116 times

Digital Object Identifier




A. Setyawan, I. W. Suparta, and N. Aida, “Globalisasi ekonomi dan pengangguran: Studi kasus Indonesia,” J. Ekon. Bisnis dan Kewirausahaan, vol. 10, no. 3, p. 263, 2021, doi: 10.26418/jebik.v10i3.49278.

N. S. B. Maria and T. Widayati, “Dampak perkembangan ekonomi digital terhadap perilaku pengguna media sosial dalam melakukan transaksi ekonomi,” J. Konsep Bisnis dan Manaj., vol. 6, no. 2, pp. 234–239, 2020, doi: 10.31289/jkbm.v6i2.3801.

R. P. D. Yulida Army Nurcahya, “Analisis pengaruh perkembangan fintech dan e-commerce terhadap perekonomian masyarakat,” vol. 2019, no. 2157, pp. 1–57, 2019.

L. B. Ilmawan and M. A. Mude, “Perbandingan metode klasifikasi Support Vector Machine dan Naïve Bayes untuk analisis sentimen pada ulasan tekstual di Google Play Store,” Ilk. J. Ilm., vol. 12, no. 2, pp. 154–161, 2020, doi: 10.33096/ilkom.v12i2.597.154-161.

F. Sodik and I. Kharisudin, “Analisis sentimen dengan SVM , NAIVE BAYES dan KNN untuk Studi tanggapan masyarakat indonesia terhadap pandemi COVID-19 pada media sosial Twitter,” Prisma, vol. 4, pp. 628–634, 2021.

D. Darwis, E. S. Pratiwi, and A. F. O. Pasaribu, “Penerapan algoritma SVM untuk analisis sentimen pada data Twitter Komisi Pemberantasan Korupsi Republik Indonesia,” Edutic - Sci. J. Informatics Educ., vol. 7, no. 1, pp. 1–11, 2020, doi: 10.21107/edutic.v7i1.8779.

A. Andreyestha and A. Subekti, “Analisa sentiment pada ulasan film dengan optimasi Ensemble Learning,” J. Inform., vol. 7, no. 1, pp. 15–23, 2020, doi: 10.31311/ji.v7i1.6171.

R. Kohavi, “Scaling up the accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid,” Proc. Second Int. Conf. Knowl. Discov. Data Min., vol. 7, no. Utgo 1988, pp. 202–207, 1996, [Online]. Available:

P. Domingos and M. Pazzani, “On the Optimality of the Simple Bayesian Classifier underZero-One Loss. Machine Learning,” Mach. Learn., vol. 29, pp. 103–130, 1997, [Online]. Available:

M. Rezwanul, A. Ali, and A. Rahman, “Sentiment analysis on Twitter data using KNN and SVM,” Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 6, pp. 19–25, 2017, doi: 10.14569/ijacsa.2017.080603.

A. Saifudin and R. S. Wahono, “Penerapan Teknik Ensemble untuk Menangani Ketidakseimbangan Kelas pada Prediksi Cacat Software,” J. Softw. Eng., vol. 1, no. 1, 2015.

I. M. A. Agastya, “Pengaruh stemmer Bahasa Indonesia terhadap peforma analisis sentimen terjemahan ulasan film,” J. Tekno Kompak, vol. 12, no. 1, p. 18, 2018, doi: 10.33365/jtk.v12i1.70.

A. N. Assidyk, E. B. Setiawan, and I. Kurniawan, “Analisis perbandingan pembobotan TF-IDF dan TF-RF pada trending topic di Twitter dengan menggunakan klasifikasi K-Nearest Neighbor,” e-Proceeding Eng., vol. 7, no. 2, pp. 7773–7781, 2020.

A. Kanitkar, “Bollywood movie success prediction using Machine Learning Algorithms,” 2018 3rd Int. Conf. Circuits, Control. Commun. Comput., pp. 1–4, 2018, doi: 10.1109/CIMCA.2018.8739693.

B. Herwijayanti, D. E. Ratnawati, and L. Muflikhah, “Klasifikasi berita online dengan menggunakan pembobotan TF-IDF dan Cosine Similarity,” Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 1, pp. 306–312, 2018, [Online]. Available:

R. S. Perdana and M. A. Fauzi, “Analisis sentimen tingkat kepuasan pengguna penyedia layanan telekomunikasi seluler indonesia pada Twitter dengan Metode Support Vector Machine dan Lexicon Based Features Twitter event detection View project Human Detection and Tracking View project,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 1(12), no. October, pp. 1725–1732, 2017, [Online]. Available:

R. Puspita and A. Widodo, “Analisis sentimen terhadap layanan indihome di Twitter dengan Metode Machine Learning,” vol. 6, no. 4, pp. 759–766, 2021, [Online]. Available:

Mochammad Haldi Widianto, “Algoritma Naive Bayes | BINUS UNIVERSITY BANDUNG - Kampus Teknologi Kreatif,” 2019. (accessed Aug. 09, 2022).

Gandhi and M. Pandey, “Hybrid Ensemble of classifiers using voting,” 2015 Int. Conf. Green Comput. Internet Things, pp. 399–404, 2015, doi: 10.1109/ICGCIoT.2015.7380496.

J. Han, M. Kamber, and J. Pei, “Data mining concepts and techniques,” MK, 2011.


  • There are currently no refbacks.

Copyright (c) 2022

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.