Sentiment Analysis for Online Learning using the Lexicon-Based Method and the Support Vector Machine Algorithm


M. Khairul Anam(1*); Triyani Arita Fitri(2); Agustin Agustin(3); Lusiana Lusiana(4); Muhammad Bambang Firdaus(5); Agus Tri Nurhuda(6);

(1) STMIK Amik Riau
(2) STMIK Amik Riau
(3) STMIK Amik Riau
(4) STMIK Amik Riau
(5) Universitas Mulawarman
(6) STMIK Amik Riau
(*) Corresponding Author

  

Abstract


The pros and cons regarding online learning has been a hot topic in society, both on social media and in the real world. Indonesian netizens still post opinions about online learning on social media such as Twitter. This study aims to analyze public comments to determine whether the trend of the comments is positive, negative, or neutral. The classification of netizen opinions is called sentiment analysis. This study applies 2 ways of carrying out sentiment analysis. The first stage employs the SVM algorithm with data labeling automatically obtained from the Emprit Academy drone portal while the second stage is still using the SVM algorithm but the data labeling with lexicon-based method. The results of this study are comparisons of labels obtained automatically from the Emprit Academy drone portal and labeling using lexicon based. The SVM algorithm obtains an accuracy of 90%, while the use of lexicon-based increases the accuracy value by 5% to 95%. It can be concluded that labeling data using a lexicon-based method can improve the accuracy of the SVM algorithm.

Keywords


Lexicon Based; Online Learning; Sentiment Analysis; Support Vector Machine

  
  

Full Text:

PDF
  

Article Metrics

Abstract view: 267 times
PDF view: 97 times
     

Digital Object Identifier

doi  https://doi.org/10.33096/ilkom.v15i2.1590.290-302
  

Cite

References


Jamila, Ahdar, and E. Natsir, “Problematika Guru dan Siswa dalam Proses Pembelajaran Daring pada Masa Pandemi Covid-19 di UPTD SMP Negeri 1 Parepare,” AL MA’ARIEF: Jurnal Pendidikan Sosial dan Budaya, vol. 3, no. 2, pp. 101–110, 2021, doi: 10.35905/almaarief.v3i2.2346.

J. Suprapmanto and Utomo, “Analysis of Online Learning Problems During The Covid-19 Pandemic and Their Solutions,” Jurnal Belaindika: Pembelajaran dan Inovasi Pendidikan, vol. 3, no. 2, pp. 15–19, 2021, doi: 10.52005/belaindika.v3i2.70.

C. A. D. Simbolon and C. Siahaan, “Penggunaan Komunikasi Media Sosial Twitter di Kalangan Remaja di Kecamatan Cibinong, Kabupaten Bogor,” JISIP: Jurnal Ilmu Sosial dan Ilmu Politik, vol. 10, no. 3, pp. 219–226, 2021, doi: 10.33366/jisip.v10i3.2356.

Samsir et al., “Naives Bayes Algorithm for Twitter Sentiment Analysis,” in Journal of Physics: Conference Series, IOP Publishing Ltd, Jun. 2021. doi: 10.1088/1742-6596/1933/1/012019.

M. K. Anam, T. P. Lestari, Latifah, M. B. Firdaus, and S. Fadli, “Analisis Kesiapan Masyarakat Pada Penerapan Smart City di Sosial Media Menggunakan SNA,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 1, pp. 69–81, 2021, doi: 10.29207/resti.v5i1.2742.

K. S. Witanto, N. A. S. ER, A. E. Karyawati, I. G. A. G. A. Kadyanan, I. K. G. Suhartana, and L. gede Astuti, “Implementasi LSTM pada Analisis Sentimen Review Film Menggunakan Adam dan RMSprop Optimizer,” Jurnal Elektronik Ilmu Komputer Udayana, vol. 10, no. 4, pp. 351–362, 2022, doi: 10.24843/JLK.2022.v10.i04.p05.

V. A. Flores, L. Jasa, and L. Linawati, “Analisis Sentimen untuk Mengetahui Kelemahan dan Kelebihan Pesaing Bisnis Rumah Makan Berdasarkan Komentar Positif dan Negatif di Instagram,” Majalah Ilmiah Teknologi Elektro, vol. 19, no. 1, p. 49, Oct. 2020, doi: 10.24843/mite.2020.v19i01.p07.

Y. Zhang, J. Sun, L. Meng, and Y. Liu, “Sentiment Analysis of E-commerce Text Reviews Based on Sentiment Dictionary,” in International Conference on Artificial Intelligence and Computer Applications (ICAICA), 2020, pp. 1346–1350. doi: 10.1109/ICAICA50127.2020.9182441.

S. H. Lye and P. L. Teh, “Customer Intent Prediction using Sentiment Analysis Techniques,” in Proceedings of the 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS 2021, Institute of Electrical and Electronics Engineers Inc., 2021, pp. 185–190. doi: 10.1109/IDAACS53288.2021.9660391.

M. Abbas, K. A. Memon, A. A. Jamali, S. Memon, and A. Ahmed, “Multinomial Naive Bayes Classification Model for Sentiment Analysis,” IJCSNS International Journal of Computer Science and Network Security, vol. 19, no. 3, p. 62, 2019, doi: 10.13140/RG.2.2.30021.40169.

X. Feng, “Research of sentiment analysis based on adaboost algorithm,” in Proceedings - 2019 International Conference on Machine Learning, Big Data and Business Intelligence, MLBDBI 2019, IEEE, 2019, pp. 279–282. doi: 10.1109/MLBDBI48998.2019.00062.

E. S. Romaito, M. K. Anam, Rahmaddeni, and A. N. Ulfah, “Perbandingan Algoritma SVM Dan NBC Dalam Analisa Sentimen Pilkada Pada Twitter,” CSRID Journal, vol. 13, no. 3, pp. 169–179, 2021, doi: 10.22303/csrid.13.3.2021.169-179.

Junadhi, Agustin, M. Rifqi, and M. K. Anam, “Sentiment Analysis of Online Lectures using K-Nearest Neighbors based on Feature Selection,” Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), vol. 11, no. 3, pp. 216–225, Dec. 2022, doi: 10.23887/janapati.v11i3.51531.

M. K. Anam, B. N. Pikir, M. B. Firdaus, S. Erlinda, and Agustin, “Penerapan Naïve Bayes Classifier , K-Nearest Neighbor dan Decision Tree untuk Menganalisis Sentimen pada Interaksi Netizen dan Pemeritah,” Matrik: Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer, vol. 21, no. 1, pp. 139–150, 2021, doi: 10.30812/matrik.v21i1.1092.

I. Mahendro and D. Abimanto, “Analisa Kepuasan Mahasiswa Terhadap E-Learning Menggunakan Algoritma Support Vector Machine,” Jurnal Saintek Maritim, vol. 23, no. 1, pp. 97–108, 2022, doi: 10.33556/jstm.v23i1.333.

F. R. Lumbanraja, R. A. Saputra, K. Muludi, A. Hijriani, and A. Junaidi, “Implementasi Support Vector Machine dalam Memprediksi Harga Rumah pada Perumahan di Kota Bandar Lampung,” Jurnal Pepadun, vol. 2, no. 3, pp. 327–335, 2021, doi: 10.23960/pepadun.v2i3.90.

N. Huda Ovirianti, M. Zarlis, and H. Mawengkang, “Support Vector Machine Using A Classification Algorithm,” Jurnal dan Penelitian Teknik Informatika, vol. 7, no. 3, 2022, doi: 10.33395/sinkron.v7i3.

I. M. Yulietha, S. A. Faraby, Adiwijaya, and W. C. Widyaningtyas, “An implementation of support vector machine on sentiment classification of movie reviews,” in Journal of Physics: Conference Series, Institute of Physics Publishing, Apr. 2018. doi: 10.1088/1742-6596/971/1/012056.

Y. N. Prasetya, D. Winarso, and Syahril, “Penerapan Lexicon Based Untuk Analisis Sentimen Pada Twiter Terhadap Isu Covid-19,” Jurnal Fasilkom, vol. 11, no. 2, pp. 97–103, 2021, doi: 10.37859/jf.v11i2.2772.

Y. Azhar, “Metode Lexicon-Learning Based Untuk Identifikasi Tweet Opini Berbahasa Indonesia,” Jurnal Nasional Pendidikan Teknik Informatika , vol. 6, no. 3, pp. 237–243, 2017, doi: 10.23887/janapati.v6i3.11739.

F. Koto and G. Y. Rahmaningtyas, “InSet Lexicon: Evaluation of a Word List forIndonesian Sentiment Analysis in Microblogs,” in International Conference on Asian Language Processing (IALP), Singapore: IEEE, 2017, pp. 391–394. doi: 10.1109/IALP.2017.8300625.

D. Winarso, Yanda Noor Yudha, and Syahril, “Analisis Sentimen Masyarakat Pada Twiter Terhadap Isu Covid-19 Menggunakan Metode Lexicon Based,” Jurnal Fasilkom, vol. 11, no. 2, pp. 97–103, Aug. 2021, doi: 10.37859/jf.v11i2.2772.

M. K. Anam, B. N. Pikir, M. B. Firdaus, and S. Erlinda, “Penerapan Na¨ıve Bayes Classifier, K-Nearest Neighbor (KNN) dan Decision Tree untuk Menganalisis Sentimen pada Interaksi Netizen dan Pemeritah,” Jurnal Manajemen, Teknik Informatika, dan Rekayasa Komputer, vol. 21, no. 1, 2021, doi: 10.30812/matrik.v21i1.1092.

F. F. Irfani, M. Triyanto, A. D. Hartanto, and Kusnawi, “Analisis Sentimen Review Aplikasi Ruangguru Menggunakan Algoritma Support Vector Machine,” JBMI (Jurnal Bisnis, Manajemen, dan Informatika), vol. 16, no. 3, pp. 258–266, 2020, doi: 10.26487/jbmi.v16i3.8607.

S. Khairunnisa, A. Adiwijaya, and S. Al Faraby, “Pengaruh Text Preprocessing terhadap Analisis Sentimen Komentar Masyarakat pada Media Sosial Twitter (Studi Kasus Pandemi COVID-19),” in Jurnal Media Informatika Budidarma, 2021, p. 406. doi: 10.30865/mib.v5i2.2835.

R. S. Putra, W. Agustin, M. K. Anam, L. Lusiana, and S. Yaakub, “The Application of Naïve Bayes Classifier Based Feature Selection on Analysis of Online Learning Sentiment in Online Media,” Jurnal Transformatika, vol. 20, no. 1, p. 44, Jul. 2022, doi: 10.26623/transformatika.v20i1.5144.

M. K. Anam, M. I. Mahendra, W. Agustin, Rahmaddeni, and Nurjayadi, “Framework for Analyzing Netizen Opinions on BPJS Using Sentiment Analysis and Social Network Analysis (SNA),” Intensif, vol. 6, no. 1, pp. 2549–6824, 2022, doi: 10.29407/intensif.v6i1.15870.

A. E. Budiman and A. Widjaja, “Analisis Pengaruh Teks Preprocessing Terhadap Deteksi Plagiarisme Pada Dokumen Tugas Akhir,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 6, no. 3, Dec. 2020, doi: 10.28932/jutisi.v6i3.2892.

A. A. Arifiyanti and E. D. Wahyuni, “SMOTE: Metode Penyeimbang Kelas Pada Klasifikasi Data Mining,” SCAN, vol. 15, no. 1, pp. 34–39, 2020, doi: 10.33005/scan.v15i1.1850.

D. Ismafillah, T. Rohana, and Y. Cahyana, “Implementasi Model

Support Vector Machine dan Logistic Regression Untuk Memprediksi Penyakit Stroke,” JURIKOM (Jurnal Riset Komputer), vol. 10, no. 1, pp. 2407–389, 2023, doi: 10.30865/jurikom.v10i1.5478.

W. P. Hutami, H. Wijayanto, and I. D. Sulvianti, “Penerapan Support Vector Machine dengan SMOTE Untuk Klasifikasi Sentimen Pemberitaan Omnibus Law Pada Situs CNNIndonesia.com,” Xplore, vol. 11, no. 1, pp. 26–35, 2022, doi: 10.29244/xplore.v11i1.852.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 M. Khairul anam, Triyani Arita Fitri, Triyani Arita Fitri, Agustin Agustin, Agustin Agustin, Lusiana Lusiana, Lusiana Lusiana, Muhammad Bambang Firdaus, Muhammad Bambang Firdaus, Agus Tri Nurhuda, Agus Tri Nurhuda

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.