Optimizing a Fire and Smoke Detection System Model with Hyperparameter Tuning and Callback on Forest Fire Images Using ConvNet Algorithm


Suryani Suryani(1*); Muhammad Syahlan Natsir(2);

(1) Universitas Dipa Makassar
(2) Universitas Dipa Makassar
(*) Corresponding Author

  

Abstract


Forest fire is a significant issue, especially for tropical countries like Indonesia. One of the impacts of forest fires is environmental pollution and damage, such as damage to flora and fauna, water, and soil. Fire detection technology is crucial as a preventive measure before the spread or expansion of fire points. Several forest fire detection systems have been developed by various research studies, with detection targets varying. Objects in the form of images are usually detected using the RGB color filtering method, but this method still results in false detections in image processing. Therefore, a classification model is built to detect fire and smoke in images using the Convolutional Neural Network (ConvNet) algorithm. In the development of the ConvNet model, a comparison of models is also conducted to assess the influence of Hyperparameter Tuning and Callbacks in optimizing the model's classification performance. The research results indicate that out of the six comparison scenarios created, the best model is obtained with 90% training data and 10% testing data, which is also optimized with Hyperparameter Tuning and Callbacks, with a Validation Accuracy of 98.18% and Validation Loss of 4.97%. This model is then implemented in the interface system.


Keywords


ConvNet Algorithm; Detection System; Forest Fire; Image; Model Optimization.

  
  

Full Text:

PDF
  

Article Metrics

Abstract view: 86 times
PDF view: 24 times
     

Digital Object Identifier

doi  https://doi.org/10.33096/ilkom.v16i1.1937.46-58
  

Cite

References


Abror, Zaky Farhan. 2020. “Klasifikasi Citra Kebakaran Dan Non Kebakaran Menggunakan Convolutional Neural Network.” Jurnal Ilmiah Teknologi Dan Rekayasa 24(2):102–13.

Bowo, Tungki Ari, Hadi Syaputra, and Muhammad Akbar. 2020. “Penerapan Algoritma Convolutional Neural Network Untuk Klasifikasi Motif Citra Batik Solo.” Journal of Software Engineering Ampera 1(2):82–96.

Fajriyani, Nur, Enda Esyudha Pratama, and Rina Septiriana. 2023. “Optimasi Hyperparameter Pada Neural Network (Studi Kasus: Identifikasi Komentar Cyberbullying Instagram).” JEPIN (Jurnal Edukasi Dan Penelitian Informatika) 9(2):339–47.

Florentin, Juliette, Thierry Dutoit, and Olivier Verlinden. 2020. “Detection and Identification of European Woodpeckers with Deep Convolutional Neural Networks.” Ecological Informatics 55:101023. doi: https://doi.org/10.1016/j.ecoinf.2019.101023.

Harahap, Salman Al Farizi, Muhammad Firly Rafliansyah, Ahmad Septyanto, and Ilham Pratama. 2023. “Studi Perbandingan Algoritma Statistic, Ensemble, Dan Neural Network Pada Kasus Image Classification.” Jurnal Rekayasa Elektro Sriwijaya 4(2):46–51.

Hu, Yaowen, Jialei Zhan, Guoxiong Zhou, Aibin Chen, Weiwei Cai, Kun Guo, Yahui Hu, and Liujun Li. 2022. “Fast Forest Fire Smoke Detection Using MVMNet.” Knowledge-Based Systems 241:1–20. doi: 10.1016/j.knosys.2022.108219.

Idris, Mohamad, Romindo Romindo, Muhammad Munsarif, Suryani Suryani, Wa Ode Rahma Agus Udaya Manarfa, Green Ferry Mandias, Andi Asvin Mahersatillah Suradi, Lutfi Hakim, Nurzaenab Nurzaenab, and Arsan Kumala Jaya. 2023. Pengolahan Citra: Teori Dan Implementasi. Yayasan Kita Menulis.

Ilahiyah, Sarirotul, and Agung Nilogiri. 2018. “Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural Network.” JUSTINDO (Jurnal Sistem & Teknologi Informasi Indonesia) 3(2):49–56.

Iwantri Goma, Edwardus, Djurlin Lampang, Fathan Purwadi, Inayah Inayah, Lasdin Sagala, Riska Riska, and Deviani Deviani. 2021. “Analysis Of Forest And Land Fire In Samarinda.” JURNAL SAINS INFORMASI GEOGRAFI [J SIG] 4(2):99–104. doi: 10.31314/j.

LeBien, Jack, Ming Zhong, Marconi Campos-Cerqueira, Julian P. Velev, Rahul Dodhia, Juan Lavista Ferres, and T. Mitchell Aide. 2020. “A Pipeline for Identification of Bird and Frog Species in Tropical Soundscape Recordings Using a Convolutional Neural Network.” Ecological Informatics 59:101113. doi: https://doi.org/10.1016/j.ecoinf.2020.101113.

Nurcahyo, Joshua Agung, and Theopilus Bayu Sasongko. 2023. “Hyperparameter Tuning Algoritma Supervised Learning Untuk Klasifikasi Keluarga Penerima Bantuan Pangan Beras.” Indonesian Journal of Computer Science (IJCS) 12(3):1351–65.

Omar, Julando, Nabila Husna Shabrina, Akmal Nusa Bhakti, and Axel Patria. 2021. “Emotion Recognition Using Convolutional Neural Network on Virtual Meeting Image.” Ultima Computing : Jurnal Sistem Komputer 13(1).

Rezki, Muhammad, Siti Nurdiani, Rizky Ade Safitri, Muhammad Ifan Rifani Ihsan, Muhammad Iqbal, and Universitas Nusa Mandiri JlJatiwaringin. 2022. “Segmentasi Api Dan Asap Pada Kebakaran Dengan Metode K-Means Clustering.” Computer Science (CO-SCIENCE) 2(1):26–32.

Saastamoinen, Kalle, and Sari Penttinen. 2021. “Visual Seabed Classification Using K-Means Clustering, CIELAB Colors and Gabor-Filters.” Pp. 2471–78 in Procedia Computer Science. Vol. 192. Elsevier B.V.

Sodik, Fajar, Ahmad Sanusi Mashuri, and Syaiful Huda. 2023. “Implementasi Algoritma Convolutional Neural Network Dan Linear Regresi Untuk Memprediksi Kebakaran Hutan Implementation of Convolutional Neural Network and Linear Regression Algorithm to Predict Forest Fires.” Cogito Smart Journal | 9(1).

Sun, Guangmin, Yuxuan Wen, and Yu Li. 2022. “Instance Segmentation Using Semi-Supervised Learning for Fire Recognition.” Heliyon 8(12). doi: 10.1016/j.heliyon.2022.e12375.

Wibowo, Rizal Endar, Rony Teguh, and Ariesta Lestari. 2021. “Deteksi Dini Kebakaran Hutan Dan Lahan Memanfaatkan Ekstraksi Exif Pada Informasi Gambar Berbasis Pengolahan Citra.” Jurnal Teknologi Informasi Jurnal Keilmuan Dan Aplikasi Bidang Teknik Informatika 15(1):1–12.

Zhang, Zili, Qingyong Jin, Lina Wang, and Zhiguo Liu. 2021. “Video-Based Fire Smoke Detection Using Temporal-Spatial Saliency Features.” Pp. 493–98 in Procedia Computer Science. Vol. 198. Elsevier B.V.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Suryani Suryani, Muhammad Syahlan Natsir

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.