Optimizing Windowing Techniques to Improve the Accuracy of Artificial Neural Networks in Predicting Outpatient Visits


Fredianto Nurcakhyadi(1*); Arief Hermawan(2);

(1) University of Technology Yogyakarta
(2) University of Technology Yogyakarta
(*) Corresponding Author

  

Abstract


Hospitals are healthcare institutions that play an important role in providing health services to the community. To optimize the service, hospitals need to predict the number of outpatient visits. The objectives of this research are (1) determine the effect of window size on the accuracy of predicting the number of outpatient visits, and (2) identify the best window size and accuracy of neural networks in predicting the daily number of outpatient visits. To achieve the research objectives, the following steps were undertaken: data collection of outpatient visits at RSUD dr. Soedirman Kebumen from 2018 to 2023, preprocessing, applying different window sizes, modeling neural networks, and testing by calculating the RMSE value for each window size. The test results show that the lowest RMSE for 2018 was 1.267 with a window size of 34, for 2019 was 1.262 with a window size of 34, for 2020 was 1.515 with a window size of 17, for 2021 was 1.81 with a window size of 18, for 2022 was 1.282 with a window size of 20, and for 2023 was 1.263 with a window size of 29. These window sizes indicate the cycle of outpatient visits each year. By understanding these visit cycles, the number of outpatient visits can be predicted at any time.

Keywords


Artificial Neural Network; Outpatient; Prediction; Windowing

  
  

Full Text:

PDF
  

Article Metrics

Abstract view: 115 times
PDF view: 45 times
     

Digital Object Identifier

doi  https://doi.org/10.33096/ilkom.v16i2.2254.172-183
  

Cite

References


W.M. Baihaqi,., M. Dianingrum, and K.A.N. Ramadhan,. Regresi Linier Sederhana untuk Memprediksi Kunjungan Pasien di Rumah Sakit Berdasarkan Jenis Layanan dan Umur Pasien. Jurnal CoreIT, Vol.5, No.2, Desember 2019 ISSN 2460-738X (Print) ISSN 2599-3321 (Online), 2019.

E. Sari, and A. Achadi. Dampak Media Sosial Terhadap Kunjungan Rumah Sakit Selama Covid-19: Tinjauan Sistematis. Syntax Literate: Jurnal Ilmiah Indonesia Vol. 7, No. 5, Mei 2022. e-ISSN: 2548-1398, p–ISSN: 2541-0849, 2022.

H. Putra, and N.U. Walmi,. Penerapan Prediksi Produksi Padi Menggunakan Artificial Neural Network Algoritma Backpropagation. Jurnal Nasional Teknologi Dan Sistem Informasi - Vol. 06 No. 02 (2020) 100-107. ISSN (Print) 2460-3465, doi: 10.25077/TEKNOSI.v6i2.2020.100-107, 2020.

S.C. Nayak, S.Dehuri, and S.B. Cho. An evolutionary functional link artificial neural network for assessment of compressive strength of concrete structures. Elsevier. Ain Shams Engineering Journal 15 102462, doi: 10.1016/j.asej.2023.102462, 2024.

M.A. Setyadji, A.Faqih, and Y.A. Wijaya. Peramalan Harga Komoditas Beras Di Kalimantan Timur Menggunakan Algoritma Neural Network. JATI (Jurnal Mahasiswa Teknik Informatika), Vol. 7 No. 1, Februari ,2023.

T. Waluyo, A. Hemawan, A,P. and Wibowo. Prediksi Penjualan Sepeda Motor Honda Menggunakan Jaringan Syaraf Tiruan. Joism: Jurnal Of Information System Management Vol 1, No 1, 2019.

P. Arsi, T. Astuti, D. Rahmawati and P. Subarkah. Implementasi Sliding Window Algorithm pada Prediksi Kurs berbasi Neural Network. Journal of Computer and Information Technology. Vol. 6, No. 1, August 2022, Pages 51-59. E-ISSN: 2579-5317,P-ISSN:2685-2152, 2022.

M. Sprogar, M. Colnaric and D. Verber. On Data Windows for Fault Detection with Neural Network. Science Direct- IFAC Papers OnLine 54-4 (2021) 38–43, doi: 10.1016/j.ifacol.2021.10.007, 2021.

R. E. Wahyuni. Optimasi Prediksi Inflasi Dengan Neural Network Pada Tahap Windowing Adakah Pengaruh Perbedaan Window Size?. Technologia: Jurnal Ilmiah,12(3),176.doi: 10.31602/tji.v12i3.5181, 2021.

J.R. Simanungkalit, H. Haviluddin, H.S. Pakpahan, N. Puspitasari, and M. Wati. Algoritma Backpropagation Neural Network dalam Memprediksi Harga Komoditi Tanaman Karet. ILKOM Jurnal Ilmiah Vol. 12 No. 1, April 2020, pp.32-38. E-ISSN 2548-7779, 2020.

N.M. Norwawi. Sliding Window Time Series Forecasting with Multilayer Perceptron and Multiregression of COVID-19 Outbreak in Malaysia. Faculty Of Science And Technology, Universiti Sains Islam Malaysia, Nilai, Neger Sembilan, Malaysia. Elsevier , Data Science for COVID-19. doi: 10.1016/B978-0-12-824536-1.00025-3 547, 2021.

H. Supriyanto. Perbandingan Metode Supervised Learning Untuk Peramalan Time Series Pada Kunjungan Pasien Rawat Jalan. Jurnal Simantec. Vol. 10, No. 2 Juni 2022 P-ISSN : 2088-2130. E-ISSN : 2502-4884, 2022.

A. Yunizar, T. Rismawan and M. Midyanti. Penerapan Metode Recurrent Neural Network Model Gated Recurrent Unit Untuk Prediksi Harga Cryptocurrency. Coding : Jurnal Komputer dan Aplikasi. Volume 11, No. 01, hal 32-41, 2023.

S.J.A. Sumarauw . Short-Term Load Forecasting using Artificial Neural Network in Indonesia. ILKOM Jurnal Ilmiah Vol. 15, No. 1, April 2023, pp. 72-81 Accredited 2nd by RISTEKBRIN No. 200/M/KPT/2020; E-ISSN 2548-7779 | P-ISSN 2087-1716, 2023.

A. Hermawan. Jaringan Saraf Tiruan, Teori, dan Aplikasi. Publisher Andi, Yogyakarta, 2006.

D. Kartini, F. Abadi, and T.H. Saragih. Prediksi Tinggi Permukaan Air Waduk Menggunakan Artificial Neural Network Berbasis Sliding Window. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 5 No. 1 (2021)39 – 44, 2021.

W. Santoso, Maimunah, and P. Sukmasetya. Prediksi Volume Sampah di TPSA Banyuurip Menggunakan Metode Backpropagation Neural Network. Jurnal Media Informatika Budidarma Vol. 7, No. 1, Page 464-472 ISSN 2614-5278 (media cetak), ISSN 2548-8368 (media online) Available Online at doi:10.30865/mib.v7i1.5499, 2023.

R. Espinosa, J. Palma, F. Jiménez, J. Kamińska, G. Sciavicco and E. Lucena-Sánchez. A time series forecasting based multi-criteria methodology for air quality prediction. Elsevier, Applied Soft Computing Vol. 113, doi: 10.1016/j.asoc.2021.107850, 2021.

Z. Fan, H. Feng, J. Jiang, C. Zhao and N. Jiang. Monte Carlo Optimization for Sliding Window Size in Dixon Quality Control of Environmental Monitoring Time Series Data. Appl. Sci., Vol. 10, No. 5, 1876; doi: 10.3390/app10051876, 2020.

A. Xu, X. Zou and C. Wang. Prediction of the Wastewater’s pH Based on Deep Learning Incorporating Sliding Windows. Computer Systems Science and Engineering Vol. 47, No. 1,1043-1059. doi: 10.32604/csse.2023.039645, 2023.

D. Zhou, X. Zhuang and H. Zuo. A hybrid deep neural network based on multi-time window convolutional bidirectional LSTM for civil aircraft APU hazard identification. Chinese Journal of Aeronautics Vol. 35, No. 4, , Pages 344-361, doi: 10.1016/j.cja.2021.03.031, 2022.

S.R. Baig , W. Iqbal , J. L. Berral and D. Carrera. Adaptive sliding windows for improved estimation of data center resource utilization. Future Generation Computer Systems Vol. 104, Pages 212-224, doi: 10.1016/j.future.2019.10.026, 2020.

Z. Wang, Y.Wang, C. Gao, F. Wang, T. Lin and Y. Chen. An adaptive sliding window for anomaly detection of time series in wireless sensor networks. Wireless Netw Vol. 28, 393–411, doi: 10.1007/s11276-021-02852-3, 2022.

Y. Qin, Z. Wei, D. Chu, J. Zhang, Y. Du and Z. Che. Artificial neural network-based multi-input multi-output model for short-term storm surge prediction on the southeast coast of China. Ocean Engineering Vol. 300, No. 15, 116915, doi: 10.1016/j.oceaneng.2024.116915, 2024.

I. Oh and J. Lee. Dense Sampling of Time Series for Forecasting. IEEE Access Vol. 10, 75571 – 75580, DOI: 10.1109/ACCESS.2022.3191668, 2022.

Z. Bousbaa, J. Sanchez-Medina and O. Bencharef. Financial Time Series Forecasting: A Data Stream Mining-Based System. Electronics, Vol. 12, No. 9 , 2039; doi: 10.3390/electronics12092039, 2023.

C. Chen, Q. Zhang, M.H. Kashani, C. Jun, S.M. Bateni and S.S. Band. Forecast of rainfall distribution based on fixed sliding window long short-term memory. Engineering Applications of Computational Fluid Mechanics Vol. 16, Issue 1, doi: 10.1080/19942060.2021.2009374, 2022.

R. Puvanendran, O.E. Dayarathna and T. Kartheeswaran. Improved Feature Extraction for Time Series Data Using Sliding Window: A Case Study of Carnatic Tala. IEEE Xplore, doi: 10.1109/ICAC60630.2023.10417654, 2024.

Z. Chen, Y. Wu, J. Mei, J. Lu, Y. Wang and J. Feng. Spatial-temporal Motif Discovery with Variable-size Sliding Windows. IEEE Xplore, doi: 10.1109/ICWCSG53609.2021.00033, 2021.

K. Yang, Z. Liu, Y. Zeng, and J. Ma. Sliding window based ON/OFF flow watermarking on Tor. Elsevier, Computer Communications, Vol. 196, 66-75, doi: 10.1016/j.comcom.2022.09.028, 2022.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Fredianto Nurcakhyadi, Arief Hermawan

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.