Enhanced Violence Detection in CCTV Using LSTM


Muhaimin Hasanudin(1*); Hadi Santoso(2); Abdi Wahab(3); Indrianto Indrianto(4); Dwina Kuswardani(5); Ahmad Ridlan(6);

(1) Universitas Mercu Buana
(2) Universitas Mercu Buana
(3) Universitas Mercu Buana
(4) Institut Teknologi PLN
(5) Institut Teknologi PLN
(6) Institut Teknologi dan Bisnis Stikom
(*) Corresponding Author

  

Abstract


Violence detection in CCTV footage remains a critical challenge for public safety, necessitating automated solutions to overcome human monitoring limitations. This study proposes an LSTM-based framework to improve detection accuracy by analyzing temporal patterns in surveillance videos. Using a dataset of 2,000 videos (1,000 violent/1,000 non-violent), the model extracts spatial-temporal features via optical flow and achieves 93% training accuracy and 91% test accuracy, with a precision of 92% and AUC of 0.94. Results demonstrate significant improvements over traditional methods, particularly in dynamic scenarios, though performance dips for occluded actions or weapon-related violence. The discussion highlights the model’s real-time applicability, computational efficiency (120 ms latency per segment), and alignment with smart city surveillance needs. Limitations include dataset diversity and environmental variability, suggesting future directions in multi-modal data fusion and edge computing. This research advances AI-powered security systems, offering a robust tool for proactive threat detection while underscoring the need for scalable, context-aware solutions.

Keywords


Cameras, Violence, Real Life Violence, Surveillance

  
  

Full Text:

PDF
  

Article Metrics

Abstract view: 107 times
PDF view: 49 times
     

Digital Object Identifier

doi  https://doi.org/10.33096/ilkom.v17i2.2318.196-202
  

Cite

References


G. Sreenu and M. A. Saleem Durai, “Intelligent video surveillance: a review through deep learning techniques for crowd analysis,” J. Big Data, vol. 6, no. 1, pp. 1–27, 2019, doi: 10.1186/s40537-019-0212-5.

A. Ilyas, S. Obaid, and N. Z. Bawany, “Deep Learning for Violence Detection in Surveillance: The Role of Transfer Learning and Pre-Trained Models,” 2023 24th Int. Arab Conf. Inf. Technol. ACIT 2023, pp. 1–8, 2023, doi: 10.1109/ACIT58888.2023.10453685.

A. K. Srivastava, V. Tripathi, B. Pant, D. P. Singh, and M. C. Trivedi, “Automatic and multimodal nuisance activity detection inside ATM cabins in real time,” Multimed. Tools Appl., vol. 82, no. 4, pp. 5113–5132, 2023, doi: 10.1007/s11042-022-12313-4.

F. U. M. Ullah, M. S. Obaidat, A. Ullah, K. Muhammad, M. Hijji, and S. W. Baik, “A Comprehensive Review on Vision-Based Violence Detection in Surveillance Videos,” ACM Comput. Surv., vol. 55, no. 10, pp. 1–44, Oct. 2023, doi: 10.1145/3561971.

J. Kukade, S. Soner, and S. Pandya, “Autonomous Anomaly Detection System for Crime Monitoring and Alert Generation,” J. Autom. Mob. Robot. Intell. Syst., vol. 16, pp. 62–71, Mar. 2023, doi: 10.14313/JAMRIS/1-2022/7.

Y. Zhao, Y. Zhao, S. Li, H. Han, and L. Xie, “UltraSnoop: Placement-agnostic Keystroke Snooping via Smartphone-based Ultrasonic Sonar,” ACM Trans. Internet Things, vol. 4, no. 4, Nov. 2023, doi: 10.1145/3614440.

S. K. Jarraya and A. A. Almazroey, “Video-based Domain Generalization for Abnormal Event and Behavior Detection,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 3, pp. 1314–1330, 2024, doi: 10.14569/IJACSA.2024.01503129.

Y. Myagmar-Ochir and W. Kim, “A Survey of Video Surveillance Systems in Smart City,” Electron., vol. 12, no. 17, 2023, doi: 10.3390/electronics12173567.

F. V Overwalle, Q. Ma, and E. Heleven, “The posterior crus II cerebellum is specialized for social mentalizing and emotional self-experiences: A meta-Analysis,” Soc. Cogn. Affect. Neurosci., vol. 15, no. 9, pp. 905–928, 2020, doi: 10.1093/scan/nsaa124.

W. Ullah et al., “Artificial Intelligence of Things-assisted two-stream neural network for anomaly detection in surveillance Big Video Data,” Futur. Gener. Comput. Syst., vol. 129, pp. 286–297, 2022, doi: 10.1016/j.future.2021.10.033.

M. M. Soliman, M. H. Kamal, M. A. El-Massih Nashed, Y. M. Mostafa, B. S. Chawky, and D. Khattab, “Violence Recognition from Videos using Deep Learning Techniques,” Proc. - 2019 IEEE 9th Int. Conf. Intell. Comput. Inf. Syst. ICICIS 2019, pp. 80–85, 2019, doi: 10.1109/ICICIS46948.2019.9014714.

J. Silva Deena et al., “Real-time based Violence Detection from CCTV Camera using Machine Learning Method,” 2022 Int. Conf. Ind. 4.0 Technol. I4Tech 2022, pp. 1–6, 2022, doi: 10.1109/I4Tech55392.2022.9952805.

X. Yin, D. Wu, Y. Shang, B. Jiang, and H. Song, “Using an EfficientNet-LSTM for the recognition of single Cow’s motion behaviours in a complicated environment,” Comput. Electron. Agric., vol. 177, no. August, p. 105707, 2020, doi: 10.1016/j.compag.2020.105707.

D. Durães, B. Veloso, and P. Novais, “Violence Detection in Audio: Evaluating the Effectiveness of Deep Learning Models and Data Augmentation,” Int. J. Interact. Multimed. Artif. Intell., vol. 8, no. 3, pp. 72–84, 2023, doi: 10.9781/ijimai.2023.08.007.

H. Jeon, H. Kim, D. Kim, and J. Kim, “PASS-CCTV: Proactive Anomaly surveillance system for CCTV footage analysis in adverse environmental conditions,” Expert Syst. Appl., vol. 254, no. March, p. 124391, 2024, doi: 10.1016/j.eswa.2024.124391.

S. R. Dinesh Jackson et al., “Real time violence detection framework for football stadium comprising of big data analysis and deep learning through bidirectional LSTM,” Comput. Networks, vol. 151, pp. 191–200, 2019, doi: 10.1016/j.comnet.2019.01.028.

D. R. Patrikar and M. R. Parate, “Anomaly detection using edge computing in video surveillance system: review,” Int. J. Multimed. Inf. Retr., vol. 11, no. 2, pp. 85–110, 2022, doi: 10.1007/s13735-022-00227-8.

A. Marwaha, A. Chirputkar, and P. Ashok, “Effective Surveillance using Computer Vision,” 2nd Int. Conf. Sustain. Comput. Data Commun. Syst. ICSCDS 2023 - Proc., pp. 655–660, 2023, doi: 10.1109/ICSCDS56580.2023.10105124.

W. Ullah, A. Ullah, T. Hussain, Z. A. Khan, and S. W. Baik, “An efficient anomaly recognition framework using an attention residual lstm in surveillance videos,” Sensors, vol. 21, no. 8, 2021, doi: 10.3390/s21082811.

W. Song, D. Zhang, X. Zhao, J. Yu, R. Zheng, and A. Wang, “A Novel Violent Video Detection Scheme Based on Modified 3D Convolutional Neural Networks,” IEEE Access, vol. 7, pp. 39172–39179, 2019, doi: 10.1109/ACCESS.2019.2906275.

I. Mugunga, J. Dong, E. Rigall, S. Guo, A. H. Madessa, and H. S. Nawaz, “A frame-based feature model for violence detection from surveillance cameras using ConvLSTM network,” 2021 6th Int. Conf. Image, Vis. Comput. ICIVC 2021, pp. 55–60, 2021, doi: 10.1109/ICIVC52351.2021.9526948.

S. M. Muiruri, M. Okong’o, and D. Mwathi, “Enhancing Public Safety Through Advanced Video Analysis: A Conv-LSTM-SVM Model for Violence Detection in Surveillance Footage,” East African J. Inf. Technol., vol. 7, no. 1, pp. 202–214, 2024, doi: 10.37284/eajit.7.1.2117.

F. U. M. I. N. Ullah and S. Korea, “A Comprehensive Review on Vision-Based Violence,” vol. 55, no. 10, 2023.

H. Mohammadi and E. Nazerfard, “Video violence recognition and localization using a semi-supervised hard attention model,” Expert Syst. Appl., vol. 212, no. August 2022, p. 118791, 2023, doi: 10.1016/j.eswa.2022.118791.

S. U. Khan, I. U. Haq, S. Rho, S. W. Baik, and M. Y. Lee, “Cover the violence: A novel deep-learning-based approach towards violence-detection in movies,” Appl. Sci., vol. 9, no. 22, 2019, doi: 10.3390/APP9224963.

A. Pandey and P. Kumar, “Resstanet: deep residual spatio-temporal attention network for violent action recognition,” Int. J. Inf. Technol., vol. 16, no. 5, pp. 2891–2900, 2024, doi: 10.1007/s41870-024-01799-w.

G. Pang, C. Yan, C. Shen, A. van den Hengel, and X. Bai, “Self-trained Deep Ordinal Regression for End-to-End Video Anomaly Detection,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 12170–12179, 2020, doi: 10.1109/CVPR42600.2020.01219.

S. A. Sumon, R. Goni, N. Bin Hashem, T. Shahria, and R. M. Rahman, “Violence Detection by Pretrained Modules with Different Deep Learning Approaches,” Vietnam J. Comput. Sci., vol. 7, no. 1, pp. 19–40, 2020, doi: 10.1142/S2196888820500013.

S. Subramani, H. Wang, H. Q. Vu, and G. Li, “Domestic violence crisis identification from facebook posts based on deep learning,” IEEE Access, vol. 6, pp. 54075–54085, 2018, doi: 10.1109/ACCESS.2018.2871446.

C. L. MacIver et al., “Macro- and micro-structural insights into primary dystonia: a UK Biobank study,” J. Neurol., vol. 271, no. 3, pp. 1416–1427, 2024, doi: 10.1007/s00415-023-12086-2.

J. Kukad, S. Soner, and S. Pandya, “Autonomous Anomaly Detection System for Crime Monitoring and Alert Generation,” J. Autom. Mob. Robot. Intell. Syst., vol. 16, no. 1, pp. 62–71, 2022, doi: 10.14313/JAMRIS/1-2022/7.

M. Hasanudin, A. H. Arribathi, Indrianto, K. Yuliana, and D. P. Kristiadi, “Increasing Independence of Cerebral Palsy Children using Virtual Reality based on Mlearning,” J. Phys. Conf. Ser., vol. 1764, no. 1, 2021, doi: 10.1088/1742-6596/1764/1/012119.

D. Durães, B. Veloso, and P. Novais, “Violence Detection in Audio: Evaluating the Effectiveness of Deep Learning Models and Data Augmentation,” Int. J. Interact. Multimed. Artif. Intell., vol. 8, no.3, pp. 72–84, 2023, doi: 10.9781/ijimai.2023.08.007.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Muhaimin Hasanudin, Hadi Santoso, Abdi Wahab, Indrianto, Dwina Kuswardani, Ahmad Ridlan

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.