Performance Analysis of LoRaWAN Communication Utilizing the RFM96 Module


Muhammad Yassir(1*); Harry Soepandi(2); Ajib Hanani(3); Johan Ericka Wahyu Prakasa(4); Ganis Chandra Puspitadewi(5); Sastya Hendri Wibowo(6); Puput Dani Prasetyo Adi(7); Akio Kitagawa(8);

(1) Institut Teknologi dan Bisnis Nobel
(2) University of Jember
(3) UIN Maulana Malik Ibrahim Malang
(4) UIN Maulana Malik Ibrahim Malang
(5) UIN Maulana Malik Ibrahim Malang
(6) Universitas Muhammadiyah Bengkulu
(7) National Research and Innovation Agency
(8) Kanazawa University
(*) Corresponding Author

  

Abstract


This research discusses the utilization of LoRa and LoRaWAN or Low Power Wide Area (LPWA) and Low Power Wide Area Network (LPWAN). In this study, the application server is utilized using Telkom IoT. In its utilization, Telkom IoT can provide comprehensive results regarding LoRa quality of service capabilities such as bit rate, latency, and longitude and latitude data. Terrestrial measurements conduct tests in different areas with different conditions that cause different data obstruction, with several LoRa end-node points transmitting data with low bit-rate. For example, heart rate data. Some other parameters are the spreading factor (SF) and power consumption. Some parameters that determine the quality of transmitting data include the Spreading Factor and the Bandwidth used. From the analysis dan Experiment results, the Delay (ms) generated from measurements using RFM96 LoRa for IoT is around 0.02 seconds or 20 ms to around 0.05 seconds or 50 ms, and sometimes it can reach 0.07 ms to 0.09 ms. RSSI and SNR show the quality of the signal obtained which will provide a Quality of Service (QoS) value. From the measurement results using Telkom IoT in several times of data collection and testing, the average RSSI (-dBm) is at -110 dBm to -115 dBm. While SNR is at -10 dB to -16 dB.


Keywords


Indonesia Provider; LoRaWAN; LoRa Communication; Low Power Consumption; LPWA; LPWAN

  
  

Full Text:

PDF
  

Article Metrics

Abstract view: 75 times
PDF view: 13 times
     

Digital Object Identifier

doi  https://doi.org/10.33096/ilkom.v16i3.2326.255-270
  

Cite

References


W. A. Jabbar, L. Y. Tiew, and N. Y. Ali Shah, “Internet of things enabled parking management system using long range wide area network for smart city,” Internet of Things and Cyber-Physical Systems, vol. 4, pp. 82–98, 2024, doi: 10.1016/j.iotcps.2023.09.001.

B. Flores-Salgado, S.-J. Gonzalez-Ambriz, C.-A. Martínez-García-Moreno, and J. Beltrán, “IoT-based system for campus community security,” Internet of Things, vol. 26, p. 101179, Jul. 2024, doi: 10.1016/j.iot.2024.101179.

S. Milani, D. Garlisi, C. Carugno, C. Tedesco, and I. Chatzigiannakis, “Edge2LoRa: Enabling edge computing on long-range wide-area Internet of Things,” Internet of Things, vol. 27, p. 101266, Oct. 2024, doi: 10.1016/j.iot.2024.101266.

A. Eduard, D. Urazayev, A. Sabyrbek, D. Orel, and D. Zorbas, “Ad-hoc train-arrival notification system for railway safety in remote areas,” Internet of Things, vol. 25, p. 101062, Apr. 2024, doi: 10.1016/j.iot.2024.101062.

K. Aggarwal, G. Sreenivasula Reddy, R. Makala, T. Srihari, N. Sharma, and C. Singh, “Studies on energy efficient techniques for agricultural monitoring by wireless sensor networks,” Computers and Electrical Engineering, vol. 113, p. 109052, Jan. 2024, doi: 10.1016/j.compeleceng.2023.109052.

S.-H. Liao, J.-D. Jiang, and C.-F. Yang, “Integration of LoRa-enabled IoT infrastructure for advanced campus safety systems in Taiwan,” Internet of Things, vol. 28, p. 101347, Dec. 2024, doi: 10.1016/j.iot.2024.101347.

G. Kaur, V. Balyan, and S. H. Gupta, “Experimental analysis of low-duty cycle campus deployed IoT network using LoRa technology,” Results in Engineering, vol. 23, p. 102844, Sep. 2024, doi: 10.1016/j.rineng.2024.102844.

M. Alipio and M. Bures, “Current testing and performance evaluation methodologies of LoRa and LoRaWAN in IoT applications: Classification, issues, and future directives,” Internet of Things, vol. 25, p. 101053, Apr. 2024, doi: 10.1016/j.iot.2023.101053.

M. A. Kamal, M. M. Alam, A. A. B. Sajak, and M. M. Su’ud, “SNR and RSSI Based an Optimized Machine Learning Based Indoor Localization Approach: Multistory Round Building Scenario over LoRa Network,” Computers, Materials & Continua, vol. 80, no. 2, pp. 1927–1945, 2024, doi: 10.32604/cmc.2024.052169.

A. Moradbeikie, M. Zare, A. Keshavarz, and S. I. Lopes, “RSSI-based LoRaWAN dataset collected in a dynamic and harsh industrial environment with high humidity,” Data Brief, vol. 53, p. 110120, Apr. 2024, doi: 10.1016/j.dib.2024.110120.

M. J. Diamse, J. N. Frasco, B. Nogra, T. Venasquez, and J. M. P. Arana, “A Design of IoT-based Capture Efficiency Monitoring and Alert System for Storm Grate Inlets through LoRaWan,” in 2023 IEEE 15th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), IEEE, Nov. 2023, pp. 1–6. doi: 10.1109/HNICEM60674.2023.10589262.

H. E. Elbsir, M. Kassab, S. Bhiri, and M. H. Bedoui, “Evaluation of LoRaWAN Class B efficiency for downlink traffic,” in 2020 16th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), IEEE, Oct. 2020, pp. 105–110. doi: 10.1109/WiMob50308.2020.9253405.

J. Mhatre, A. Lee, H. Lee, and T. N. Nguyen, “DDPG_CAD: Intelligent Channel Activity Detection Scheduling in Massive IoT LoRaWAN,” in 2024 IEEE 10th International Conference on Network Softwarization (NetSoft), IEEE, Jun. 2024, pp. 248–252. doi: 10.1109/NetSoft60951.2024.10588888.

K. S. Abakar, I. Bennis, A. Abouaissa, and P. Lorenz, “A Hidden Parameter Study for Traffic-oriented LoRaWAN Deployment,” in 2024 International Wireless Communications and Mobile Computing (IWCMC), IEEE, May 2024, pp. 1376–1381. doi: 10.1109/IWCMC61514.2024.10592527.

T. Porselvi, S. G. CS, J. B, P. K, and S. B. S, “IoT Based Coal Mine Safety and Health Monitoring System using LoRaWAN,” in 2021 3rd International Conference on Signal Processing and Communication (ICPSC), IEEE, May 2021, pp. 49–53. doi: 10.1109/ICSPC51351.2021.9451673.

K. Z. Islam, D. Murray, D. Diepeveen, M. G. K. Jones, and F. Sohel, “LoRa-based outdoor localization and tracking using unsupervised symbolization,” Internet of Things, vol. 25, p. 101016, Apr. 2024, doi: 10.1016/j.iot.2023.101016.

T. Mahjoub, A. Ben Mnaouer, M. Ben Said, and H. Boujemaa, “LoRa signal propagation and path loss prediction in Tunisian date palm oases,” Comput Electron Agric, vol. 222, p. 109027, Jul. 2024, doi: 10.1016/j.compag.2024.109027.

R. R. Guerra, A. Vizziello, P. Savazzi, E. Goldoni, and P. Gamba, “Forecasting LoRaWAN RSSI using weather parameters: A comparative study of ARIMA, artificial intelligence and hybrid approaches,” Computer Networks, vol. 243, p. 110258, Apr. 2024, doi: 10.1016/j.comnet.2024.110258.

P. A. Barro, M. Zennaro, and E. Pietrosemoli, “TLTN – The local things network: on the design of a LoRaWAN gateway with autonomous servers for disconnected communities,” in 2019 Wireless Days (WD), IEEE, Apr. 2019, pp. 1–4. doi: 10.1109/WD.2019.8734239.

I. Martinez, F. Nouvel, S. Lahoud, P. Tanguy, and M. El Helou, “On the Performance Evaluation of LoRaWAN with Re-transmissions under Jamming,” in 2020 IEEE Symposium on Computers and Communications (ISCC), IEEE, Jul. 2020, pp. 1–7. doi: 10.1109/ISCC50000.2020.9219644.

V. M and A. Giri, “Analysing the performance of 6LoWPAN- CoAP and RPL-CoAP on LoRaWAN in Constrained Environment,” in 2023 7th International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS), IEEE, Nov. 2023, pp. 1–6. doi: 10.1109/CSITSS60515.2023.10334082.

A. Loubany, S. Lahoud, A. E. Samhat, and M. El Helou, “Throughput Improvement for LoRaWAN Networks Considering IoT Applications Priority,” in 2023 6th Conference on Cloud and Internet of Things (CIoT), IEEE, Mar. 2023, pp. 206–210. doi: 10.1109/CIoT57267.2023.10084887.

M. Chen, L. Mokdad, J. Ben Othman, and J.-M. Fourneau, “Probabilistic Model Checking for Unconfirmed Transmission in LoRaWAN on the MAC Layer,” in GLOBECOM 2023 - 2023 IEEE Global Communications Conference, IEEE, Dec. 2023, pp. 2457–2462. doi: 10.1109/GLOBECOM54140.2023.10437456.

A. S. Lutakamale, H. C. Myburgh, and A. de Freitas, “RSSI-based fingerprint localization in LoRaWAN networks using CNNs with squeeze and excitation blocks,” Ad Hoc Networks, vol. 159, p. 103486, Jun. 2024, doi: 10.1016/j.adhoc.2024.103486.

E. Sisinni, A. Flammini, M. Gaffurini, M. Pasetti, S. Rinaldi, and P. Ferrari, “LoRaWAN end device disaggregation and decomposition by means of lightweight virtualization,” Internet of Things, vol. 25, p. 101033, Apr. 2024, doi: 10.1016/j.iot.2023.101033.

F. Z. Mardi, Y. Hadjadj-Aoul, M. Bagaa, and N. Benamar, “Resource Allocation for LoRaWAN Network Slicing: Multi-Armed Bandit-based Approaches,” Internet of Things, vol. 26, p. 101195, Jul. 2024, doi: 10.1016/j.iot.2024.101195.

P. D. P. Adi and Y. Wahyu, “The error rate analyze and parameter measurement on LoRa communication for health monitoring,” Microprocess Microsyst, vol. 98, p. 104820, Apr. 2023, doi: 10.1016/j.micpro.2023.104820.

M. Niswar et al., “Performance evaluation of ZigBee-based wireless sensor network for monitoring patients’ pulse status,” in 2013 International Conference on Information Technology and Electrical Engineering (ICITEE), IEEE, Oct. 2013, pp. 291–294. doi: 10.1109/ICITEED.2013.6676255.

P. D. P. Adi et al., “Performance Evaluation of LoRa RFM96 on IoT Telkom Indonesia,” in 2023 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), IEEE, Nov. 2023, pp. 313–319. doi: 10.1109/ICRAMET60171.2023.10366729.

P. D. P. Adi et al., “Performance of LoRaWAN in Multi-Node,” in 2023 IEEE 9th Information Technology International Seminar (ITIS), IEEE, Oct. 2023, pp. 1–6. doi: 10.1109/ITIS59651.2023.10420407.

R. V. Şenyuva, “Union bounds on the symbol error probability of LoRa modulation for flat Rician block fading channels,” Physical Communication, vol. 58, p. 102012, Jun. 2023, doi: 10.1016/j.phycom.2023.102012.

Y. A. Liani et al., “The Broiler Chicken Coop Temperature Monitoring Use Fuzzy Logic and LoRAWAN,” in 2021 3rd International Conference on Electronics Representation and Algorithm (ICERA), IEEE, Jul. 2021, pp. 161–166. doi: 10.1109/ICERA53111.2021.9538771.

P. D. P. Adi et al., “Performance LoRa Technology for Autonomous Vehicles,” in 2023 International Seminar on Intelligent Technology and Its Applications (ISITIA), IEEE, Jul. 2023, pp. 703–709. doi: 10.1109/ISITIA59021.2023.10221049.

N. Souli, M. Karatzia, C. Georgiades, P. Kolios, and G. Ellinas, “Mission-critical UAV swarm coordination and cooperative positioning using an integrated ROS-LoRa-based communications architecture,” Comput Commun, vol. 225, pp. 205–216, Sep. 2024, doi: 10.1016/j.comcom.2024.07.011.

Y.-T. Ting and K.-Y. Chan, “Optimising performances of LoRa based IoT enabled wireless sensor network for smart agriculture,” J Agric Food Res, vol. 16, p. 101093, Jun. 2024, doi: 10.1016/j.jafr.2024.101093.

M. A. A. Khan, H. Ma, A. Farhad, A. Mujeeb, I. K. Mirani, and M. Hamza, “When LoRa meets distributed machine learning to optimize the network connectivity for green and intelligent transportation system,” Green Energy and Intelligent Transportation, vol. 3, no. 3, p. 100204, Jun. 2024, doi: 10.1016/j.geits.2024.100204.

L. C. da Rocha Santos, S. M. Bruschi, P. S. L. de Souza, J. Ueyama, A. de Jesus dos Santos, and J. S. Barbosa, “Performance analysis of a Vehicular Ad Hoc network Using LoRa technology and IoT devices in Amazon Rivers,” Ad Hoc Networks, vol. 152, p. 103301, Jan. 2024, doi: 10.1016/j.adhoc.2023.103301.

H. Wang, X. Zhang, J. Liao, Y. Zhang, and H. Li, “An improved adaptive data rate algorithm of LoRaWAN for agricultural mobile sensor nodes,” Comput Electron Agric, vol. 219, p. 108773, Apr. 2024, doi: 10.1016/j.compag.2024.108773.

F. Busacca, S. Mangione, S. Palazzo, F. Restuccia, and I. Tinnirello, “SDR-LoRa, an open-source, full-fledged implementation of LoRa on Software-Defined-Radios: Design and potential exploitation,” Computer Networks, vol. 241, p. 110194, Mar. 2024, doi: 10.1016/j.comnet.2024.110194.

E. Ossongo, M. Esseghir, and L. Merghem-Boulahia, “A multi-agent federated reinforcement learning-based optimization of quality of service in various LoRa network slices,” Comput Commun, vol. 213, pp. 320–330, Jan. 2024, doi: 10.1016/j.comcom.2023.11.015.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Muhammad Yassir, Harry Soepandi, Ajib Hanani, Johan Ericka Wahyu Prakasa, Ganis Chandra Puspitasdewi, Sastya Hendri Wibowo, Puput Dani Prasetyo Adi, Akio Kitagawa

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.