Detection of Persistent vs. Non-Persistent Drugs in Pharmacy Using Decision Tree Classification Based on Gini, Entropy, and Log Loss Criteria


Mardewi Mardewi(1); Firman Aziz(2*); Syahrul Usman(3); Rahmat Fuadi Syam(4);

(1) STMIK Kreatindo Manokwari
(2) Universitas Pancasakti Makassar
(3) Universitas Pancasakti Makassar
(4) Universitas Pancasakti Makassar
(*) Corresponding Author

  

Abstract


This study evaluates the performance of Decision Tree methods in classification, utilizing three different criteria: Entropy, Gini, and Log Loss. The objective is to determine which criterion is most effective in achieving high classification accuracy using prescription data from the UCI repository, comprising 3,424 prescription records with 67 variables. The analysis results show that the Entropy criterion delivers the best performance with an accuracy of 79.1%, followed by the Gini criterion at 78%, and the Log Loss criterion at 77.9%. These findings indicate that the Entropy criterion is superior in reducing uncertainty and capturing the underlying data structure, while both Gini and Log Loss criteria also provide competitive, though slightly lower, results. The main contribution of this research is a comparative evaluation of decision tree criteria using real-world prescription data to support accurate classification of medication adherence, which can be beneficial for developing intelligent pharmacy systems. This research offers valuable insights into the effectiveness of various criteria within the Decision Tree method and can aid in selecting the most appropriate criterion for future classification applications.


Keywords


Classification; Persistent vs. Non-Persistent; Decision Tree; Entropy Criterion; Gini Criterion; Log Loss Criterion

  
  

Full Text:

PDF
  

Article Metrics

Abstract view: 158 times
PDF view: 49 times
     

Digital Object Identifier

doi  https://doi.org/10.33096/ilkom.v17i2.2585.186-195
  

Cite

References


K. S. Olowoyo, D. T. Esan, B. T. Adeyanju, D. B. Olawade, B. E. Oyinloye, and P. Olowoyo, “Telemedicine as a tool to prevent multi-drug resistant tuberculosis in poor resource settings: Lessons from Nigeria,” J. Clin. Tuberc. Other Mycobact. Dis., vol. 35, p. 100423, May 2024, doi: 10.1016/J.JCTUBE.2024.100423.

K. Gow, A. Rashidi, and L. Whithead, “Factors Influencing Medication Adherence Among Adults Living with Diabetes and Comorbidities: a Qualitative Systematic Review,” Curr. Diab. Rep., vol. 24, no. 2, pp. 19–25, Feb. 2024, doi: 10.1007/S11892-023-01532-0/METRICS.

A. Kumar, S. Harakuni, R. Paranjape, A. S. Korabu, and J. B. Prasad, “Factors determining successful treatment outcome among notified tuberculosis patients in Belagavi district of North Karnataka, India,” Clin. Epidemiol. Glob. Heal., vol. 25, p. 101505, Jan. 2024, doi: 10.1016/J.CEGH.2024.101505.

V. Singh, “Tuberculosis treatment-shortening,” Drug Discov. Today, vol. 29, no. 5, p. 103955, May 2024, doi: 10.1016/J.DRUDIS.2024.103955.

M. Östbring and G. P. Eriksson, “Effects of a pharmaceutical care intervention on clinical outcomes and patient adherence in coronary heart disease: the MIMeRiC randomized controlled trial,” Springer, vol. 21, no. 1, Dec. 2020, doi: 10.1186/s12872-021-02178-0.

S. Mucherino et al., “Drug Utilization and Measurement of Medication Adherence: A Real World Study of Psoriasis in Italy,” mdpi.com, 2023, doi: 10.3390/pharmaceutics15122647.

K. Tsioufis José María Castellano Vázquez Georgia Sykara Franco Mondello Malvestiti Joris van Vugt, K. Tsioufis, and J. M. Castellano Vázquez, “Real-world evidence for adherence and persistence with atorvastatin therapy,” Springer, vol. 10, no. 2, pp. 445–464, Dec. 2021, doi: 10.1007/s40119-021-00240-8.

Y. Kumar, A. Koul, R. Singla, and M. I. And, “Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda,” Springer, vol. 14, no. 7, pp. 8459–8486, Jul. 2023, doi: 10.1007/s12652-021-03612-z.

S. A. Alowais, “Revolutionizing healthcare: the role of artificial intelligence in clinical practice,” Springer, vol. 23, no. 1, Dec. 2023, doi: 10.1186/s12909-023-04698-z.

D. M. Mengi, M, “Artificial intelligence based techniques for the detection of socio-behavioral disorders: a systematic review,” Springer, vol. 29, no. 5, pp. 2811–2855, Aug. 2022, doi: 10.1007/s11831-021-09682-8.

F. Aziz, A. Lawi, and E. Budiman, “Increasing Accuracy of Ensemble Logistics Regression Classifier by Estimating the Newton Raphson Parameter in Credit Scoring,” in 5th International Conference on Computing Engineering and Design, ICCED 2019, 2019, pp. 1–4, doi: 10.1109/ICCED46541.2019.9161078.

N. Hardiyanti, A. Lawi, Diaraya, and F. Aziz, “Classification of Human Activity based on Sensor Accelerometer and Gyroscope Using Ensemble SVM method,” Proc. - 2nd East Indones. Conf. Comput. Inf. Technol. Internet Things Ind. EIConCIT 2018, pp. 304–307, Nov. 2018, doi: 10.1109/EICONCIT.2018.8878627.

A. Lawi, M. Idris Rifai Sarro, and F. Aziz, “Classification of Firm External Audit Using Ensemble Support Vector Machine Method,” 2019, doi: 10.4108/eai.2-5-2019.2284605.

S. Haines, M. Savic, and A. C. Nielsen, S, “Key considerations for the implementation of clinically focused prescription drug monitoring programs to avoid unintended consequences,” Int. J. Drug, Elsevier, 2022, Accessed: Jul. 23, 2024.

S. van de Hei and J. A. Dierick, BJ, “medication adherence management in asthma and chronic obstructive pulmonary disease: a review of effective interventions and development of a practical …,” J. Allergy, 2021, Accessed: Jul. 23, 2024.

M. Qvarnström, T. Kahan, H. Kieler, L. Brandt, J. Hasselström, and B. Wettermark, “Medication persistence to antihypertensive drug treatment–a cross-sectional study of attitudes towards hypertension and medication in persistent and non-persistent,” Taylor Fr. Qvarnström, T Kahan, H Kieler, L Brand. J Hasselström, B WettermarkBlood Press. 2019•Taylor Fr., vol. 28, no. 5, pp. 309–316, Sep. 2019, doi: 10.1080/08037051.2019.1627858.

N. Oeri and D. B. Kälin, S, “The role of executive functions in kindergarteners’ persistent and non‐persistent behaviour,” Wiley Online Libr. Oeri, S Kälin, D ButtelmannBritish J. Dev. Psychol. 2020•Wiley Online Libr., 2020, Accessed: Jul. 17, 2024.

S. Abasa, F. Aziz, P. Ishak, and J. J. And, “Detection of Persistent vs Non-Persistent Medications in Pharmacy Using Artificial Intelligence: Development of Intelligent Algorithms for Pharmaceutical Product,” journal.unpacti.ac.id, vol. 6, no. 1, pp. 2723–1240, 2025, doi: 10.61628/jsce.v6i1.1618.

S. Abasa, F. Aziz, P. Ishak, and J. Jeffry, “Detection of Persistent vs Non-Persistent Medications in Pharmacy Using Artificial Intelligence: Development of Intelligent Algorithms for Pharmaceutical Product Safety,” J. Syst. Comput. Eng., vol. 6, no. 1, pp. 137–143, Mar. 2025, doi: 10.61628/JSCE.V6I1.1618.

Y. Feng, D. Duives, W. Daamen, and S Hoogendoorn, “Data collection methods for studying pedestrian behaviour: A systematic review,” Build. Environ., 2021.

D. Nayak and T. S. Das, J, “Quality Control Pipeline for Next Generation Sequencing Data Analysis,” Intell. Cloud Comput., vol. 286, pp. 215–225, 2022, doi: 10.1007/978-981-16-9873-6_20.

J. Giovanelli and A. A. Bilalli, B, “Data pre-processing pipeline generation for AutoETL,” Inf. Syst. Elsevier, 2022, Accessed: Jul. 23, 2024.

J. Luengo, D. García-Gil, and S. G.-C. Ramírez-Gallego, S, “Big data preprocessing,” Springer, 2020, Accessed: Jul. 23, 2024.

S. Shahrabadi, T. Adão, E. Peres, R. Morais, L. G. Magalhães, and V. Alves, “Automatic Optimization of Deep Learning Training through Feature-Aware-Based Dataset Splitting,” Algorithms 2024, Vol. 17, Page 106, vol. 17, no. 3, p. 106, Feb. 2024, doi: 10.3390/A17030106.

Z. Wang, Q. Wang, F. Yang, C. Wang, M. Yang, and J. Yu, “How machine learning boosts the understanding of organic pollutant adsorption on carbonaceous materials: A comprehensive review with statistical insights,” Sep. Purif. Technol., vol. 350, p. 127790, Dec. 2024, doi: 10.1016/J.SEPPUR.2024.127790.

J. Kang et al., “Bibimbap : Pre-trained models ensemble for Domain Generalization,” Pattern Recognit., vol. 151, p. 110391, Jul. 2024, doi: 10.1016/J.PATCOG.2024.110391.

D. Hamouda, M. A. Ferrag, N. Benhamida, H. Seridi, and M. C. Ghanem, “Revolutionizing intrusion detection in industrial IoT with distributed learning and deep generative techniques,” Internet of Things, vol. 26, p. 101149, Jul. 2024, doi: 10.1016/J.IOT.2024.101149.

J. Dong, Y. Jiang, P. Chen, J. Li, Z. Wang, and S. Han, “Short-term power load forecasting using bidirectional gated recurrent units-based adaptive stacked autoencoder,” Int. J. Electr. Power Energy Syst., vol. 165, p. 110459, Apr. 2025, doi: 10.1016/J.IJEPES.2025.110459.

J. Allgaier and R. Pryss, “Cross-Validation Visualized: A Narrative Guide to Advanced Methods,” Mach. Learn. Knowl. Extr. 2024, Vol. 6, Pages 1378-1388, vol. 6, no. 2, pp. 1378–1388, Jun. 2024, doi: 10.3390/MAKE6020065.

A. Lawi and F. Aziz, “Comparison of Classification Algorithms of the Autism Spectrum Disorder Diagnosis,” Proc. - 2nd East Indones. Conf. Comput. Inf. Technol. Internet Things Ind. EIConCIT 2018, pp. 218–222, Nov. 2018, doi: 10.1109/EICONCIT.2018.8878593.

M Bhatia, “Smart information analysis for health quality: decision tree approach,” Springer, vol. 14, no. 10, pp. 14225–14236, Oct. 2023, doi: 10.1007/S12652-023-04660-3.

M. Zhang and W. S.- Chen, Y, “Decision tree evaluation on sensitive datasets for secure e-healthcare systems,” IEEE Trans. on, ieeexplore.ieee.org, 2022.

L. Zhao and S. J. Lee, S, “Decision tree application to classification problems with boosting algorithm,” mdpi.com, 2021, doi: 10.3390/electronics10161903.

A. A. Abdulqader, HA, “A Review on Decision Tree Algorithm in Healthcare Applications,” he Indones. J. Comput., 2024, Accessed: Apr. 26, 2025.

O. M. Mustafa, O. M. Ahmed, and V. A. Saeed, “Comparative analysis of decision tree algorithms using gini and entropy criteria on the forest covertypes dataset,” Springer, vol. 1058 LNNS, pp. 185–193, 2024, doi: 10.1007/978-3-031-65522-7_17.

O. Rahmati, M. Avand, P. Yariyan, J. P. Tiefenbacher, A. Azareh, and D. T. Bui, “Assessment of Gini-, entropy-and ratio-based classification trees for groundwater potential modelling and prediction,” Taylor Fr., vol. 37, no. 12, pp. 3397–3415, 2022, doi: 10.1080/10106049.2020.1861664.

E. A. Ogundepo and W. B. Yahya, “Performance analysis of supervised classification models on heart disease prediction,” Springer, vol. 19, no. 1, pp. 129–144, Mar. 2023, doi: 10.1007/S11334-022-00524-9.

R. K. Provost, F, “Guest editors’ introduction: On applied research in machine learning,” academia.edu, 1998, Accessed: Mar. 08, 2022.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Mardewi, Firman Aziz, Syahrul Usman, Rahmat Fuadi Syam

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.