Optimizing K-Means Using Greylag Goose Optimization Algorithm for Household Energy Consumption Pattern Segmentation


Florentina Yuni Arini(1); Ahmad Rozaq Heryansyah(2*); Rahima Ratna Dewanti(3); Rizky Aulia Adi Saputro(4); Awan Saputra Romadhoni(5); Muhammad Lutfi Wibowo(6); Ikhsan Ardiansyah(7); Poomin Duankhan(8);

(1) Universitas Negeri Semarang
(2) Universitas Negeri Semarang
(3) Universitas Negeri Semarang
(4) Universitas Negeri Semarang
(5) Universitas Negeri Semarang
(6) Universitas Negeri Semarang
(7) Universitas Negeri Semarang
(8) Khon kaen University
(*) Corresponding Author

  

Abstract


Electricity is a crucial resource in everyday life, and rising household energy demand requires smarter monitoring and management approaches. Analyzing consumption data enables the discovery of typical energy usage behaviors that support efficient resource planning. Clustering techniques are widely used to group usage profiles without predefined categories, with K-Means being one of the most popular methods because of its speed and practical implementation. However, this algorithm is highly dependent on the initial centroid selection and may generate inaccurate grouping results if trapped in local optima. To overcome these drawbacks, this research combines K-Means with the Greylag Goose Optimization (GGO) algorithm, a nature-inspired metaheuristic that simulates the adaptive navigation and social coordination of migratory grey geese. By enhancing both exploration and exploitation, GGO improves the accuracy of centroid placement and overall clustering performance. The research utilized Individual Household Electric Power Consumption dataset, which consists of minute-by-minute measurements of several electrical attributes. After preprocessing and exploratory analysis, clustering was executed using three approaches: conventional K-Means, GGO, and a hybrid K-Means–GGO model. Based on the Silhouette Score evaluation, clustering performance improved significantly from 0.6236 with standard K-Means to 0.9675 using the hybrid approach. The resulting segmentation provides deeper insights into household consumption behaviors.


Keywords


Electric Consumption; Clustering; K-Means; Household Energy; Optimization

  
     

Article Metrics

Abstract view: 12 times
PDF (Bahasa Indonesia) view: 7 times
     

Digital Object Identifier

doi  https://doi.org/10.33096/ilkom.v17i3.2851.302-311
  

Cite

References


pp. 1–21, 2019, doi: 10.1007/978-3-030-23682-3_1.

K. Zhou and S. Yang, “Understanding household energy consumption behavior: The contribution of energy big data analytics,” Renew. Sustain. Energy Rev., vol. 56, pp. 810–819, 2016, doi: 10.1016/j.rser.2015.12.001.

X. Gao and A. Malkawi, “A new methodology for building energy performance benchmarking: An approach based on intelligent clustering algorithm,” Energy Build., vol. 84, pp. 607–616, 2014, doi: 10.1016/j.enbuild.2014.08.030.

Stuart~P.~Lloyd, “Least squares quantization in {PCM},” IEEE Trans. Inf. Theory, vol. 28, no. 2, pp. 129–136, 1982.

M. A. W. J. A. Hartigan, “Algorithm AS 136 A K-Means Clustering Algorithm,” J. R. Stat. Soc. Ser. B Methodol., vol. 28, no. 1, pp. 100–108, 2012.

R. Wu, “Behavioral analysis of electricity consumption characteristics for customer groups using the k-means algorithm,” Syst. Soft Comput., vol. 6, 2024, doi: 10.1016/j.sasc.2024.200143.

A. M. Ikotun, A. E. Ezugwu, L. Abualigah, B. Abuhaija, and J. Heming, “K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data,” Inf. Sci. (Ny)., vol. 622, pp. 178–210, 2023, doi: 10.1016/j.ins.2022.11.139.

M. Suyal and S. Sharma, “A Review on Analysis of K-Means Clustering Machine Learning Algorithm based on Unsupervised Learning,” J. Artif. Intell. Syst., vol. 6, no. 1, pp. 85–95, 2024, doi: 10.33969/ais.2024060106.

O. E. Turgut, M. S. Turgut, and E. Kırtepe, “A systematic review of the emerging metaheuristic algorithms on solving complex optimization problems,” Neural Comput. Appl., vol. 35, no. 19, pp. 14275–14378, 2023, doi: 10.1007/s00521-023-08481-5.

K.-L. Du and M. N. S. Swamy, “Search and Optimization by Metaheuristics,” Search Optim. by Metaheuristics, 2016, doi: 10.1007/978-3-319-41192-7.

N. Gupta, M. Khosravy, N. Patel, and I. Sethi, “Evolutionary Optimization Based on Biological Evolution in Plants,” Procedia Comput. Sci., vol. 126, pp. 146–155, 2018, doi: 10.1016/j.procS.2018.07.218.

F. Y. Arini, F. R. N. Saputra, Liafathra, R. D. R. Artama, and S. Pichai, “Optimizing Heart Disease Prediction: A Collaborative Approach of Support Vector Regression and Grey Wolf Optimizer,” 2025 Int. Conf. Smart Comput. IoT Mach. Learn. SIML 2025, 2025, doi: 10.1109/SIML65326.2025.11080978.

T. Alexandros and D. Georgios, “Nature Inspired Optimization Algorithms Related to Physical Phenomena and Laws of Science: A Survey,” Int. J. Artif. Intell. Tools, vol. 26, no. 6, 2017, doi: 10.1142/S0218213017500221.

E. S. M. El-kenawy, N. Khodadadi, S. Mirjalili, A. A. Abdelhamid, M. M. Eid, and A. Ibrahim, “Greylag Goose Optimization: Nature-inspired optimization algorithm,” Expert Syst. Appl., vol. 238, p. 122147, 2024, doi: 10.1016/j.eswa.2023.122147.

G. Hebrail and A. Berard, “Individual Household Electric Power Consumption,” UCI Mach. Learn. Repos., 2006.

O. Alotaibi, E. Pardede, and S. Tomy, “Cleaning Big Data Streams: A Systematic Literature Review,” Technologies, vol. 11, no. 4, 2023, doi: 10.3390/technologies11040101.

P. Martins, F. Cardoso, P. Váz, J. Silva, and M. Abbasi, “Performance and Scalability of Data Cleaning and Preprocessing Tools: A Benchmark on Large Real-World Datasets,” Data, vol. 10, no. 5, 2025, doi: 10.3390/data10050068.

M. Ravikanth, S. Korra, G. Mamidisetti, M. Goutham, and T. Bhaskar, “An efficient learning based approach for automatic record deduplication with benchmark datasets,” Sci. Rep., vol. 14, no. 1, 2024, doi: 10.1038/s41598-024-63242-1.

F. Gröger et al., “SelfClean: A Self-Supervised Data Cleaning Strategy,” 2023.

S. Dhummad, “The Imperative of Exploratory Data Analysis in Machine Learning,” Sch. J. Eng. Technol., vol. 13, no. 01, pp. 30–44, 2025, doi: 10.36347/sjet.2025.v13i01.005.

A. M. Sharifnia, D. E. Kpormegbey, D. K. Thapa, and M. Cleary, “A Primer of Data Cleaning in Quantitative Research: Handling Missing Values and Outliers,” J. Adv. Nurs., 2025, doi: 10.1111/jan.16908.

H. I. Patel and D. Patel, “Exploratory Data Analysis and Feature Selection for Predictive Modeling of Student Academic Performance Using a Proposed Dataset,” Int. J. Eng. Trends Technol., vol. 72, no. 11, pp. 131–143, 2024, doi: 10.14445/22315381/IJETT-V72I11P116.

W. A. Prastyabudi and Isa Hafidz, “Energy Consumption Data Analysis: Indonesia Perspective,” J. Comput. Electron. Telecommun., vol. 1, no. 1, 2020, doi: 10.52435/complete.v1i1.47.

C. Ragupathi, S. Dhanasekaran, N. Vijayalakshmi, and A. O. Salau, “Prediction of electricity consumption using an innovative deep energy predictor model for enhanced accuracy and efficiency,” Energy Reports, vol. 12, pp. 5320–5337, 2024, doi: 10.1016/j.egyr.2024.11.018.

D. Muyulema-Masaquiza and M. Ayala-Chauvin, “Segmentation of Energy Consumption Using K-Means: Applications in Tariffing, Outlier Detection, and Demand Prediction in Non-Smart Metering Systems,” Energies, vol. 18, no. 12, 2025, doi: 10.3390/en18123083.

A. E. Ezugwu et al., “A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects,” Eng. Appl. Artif. Intell., vol. 110, 2022, doi: 10.1016/j.engappai.2022.104743.

G. J. Oyewole and G. A. Thopil, “Data clustering: application and trends,” Artif. Intell. Rev., vol. 56, no. 7, pp. 6439–6475, 2023, doi: 10.1007/s10462-022-10325-y.

C. Wongoutong, “The impact of neglecting feature scaling in k-means clustering,” PLoS One, vol. 19, no. 12, 2024, doi: 10.1371/journal.pone.0310839.

A. Zhu, Z. Hua, Y. Shi, Y. Tang, and L. Miao, “An improved k-means algorithm based on evidence distance,” Entropy, vol. 23, no. 11, 2021, doi: 10.3390/e23111550.

H. Yin, A. Aryani, S. Petrie, A. Nambissan, A. Astudillo, and S. Cao, “A Rapid Review of Clustering Algorithms,” 2024.

Z. Deng, Y. Wang, and M. M. Alobaedy, “Federated k-means based on clusters backbone,” PLoS One, vol. 20, no. 6 June, 2025, doi: 10.1371/journal.pone.0326145.

P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and validation of cluster analysis,” J. Comput. Appl. Math., vol. 20, no. C, pp. 53–65, 1987, doi: 10.1016/0377-0427(87)90125-7.

E. Umargono, J. E. Suseno, and S. . Vincensius Gunawan, “K-Means Clustering Optimization Using the Elbow Method and Early Centroid Determination Based on Mean and Median Formula,” 2020, doi: 10.2991/assehr.k.201010.019.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Florentina Yuni Arini, Ahmad Rozaq Heryansyah, Rahima Ratna Dewanti, Rizky Aulia Adi Saputro, Awan Saputra Romadhoni, Muhammad Lutfi Wibowo, Ikhsan Ardiansyah, Poomin Duankhan

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.