A Deep Learning Approach for Tourism Destination Recommendation Using IndoBERT and TF-IDF


Widya Silfianti(1*); Rama Dian Syah(2); Adang Suhendra(3); Ali Isra(4); Astie Darmayantie(5); Noviawan Rasyid Ohorella(6);

(1) Universitas Gunadarma
(2) Universitas Gunadarma
(3) Universitas Gunadarma
(4) Universitas Gunadarma
(5) Universitas Gunadarma
(6) Universitas Gunadarma
(*) Corresponding Author

  

Abstract


The rapid development of information technology has transformed various sectors, including tourism, where recommendation systems play a vital role in providing personalized services. Tourists are often faced with a wide range of destination choices, making decision-making increasingly complex. To address this, Artificial Intelligence (AI) and Natural Language Processing (NLP) can be leveraged to enhance recommendation accuracy through deeper analysis of destination descriptions. This study proposes a tourism destination recommendation system combining IndoBERT, SimCSE, and TF-IDF methods. IndoBERT was applied to capture semantic and contextual meaning in the Indonesian language, SimCSE improved sentence-level embeddings, and TF-IDF extracted essential keywords from descriptions. The system was implemented on a website to generate personalized recommendations based on user input. Evaluation results demonstrated that the composition of IndoBERT and TF-IDF achieved strong performance, with precision, recall, and F1-score values of 1.0 at a similarity threshold of 0.20. However, higher thresholds reduced recall and F1-score, indicating that a lower threshold provided a better balance between accuracy and coverage. The recommendation outputs matched user preferences, and functional testing showed that all website features performed successfully. These findings highlight the effectiveness of combining semantic and keyword-based methods for tourism recommendation. Future work could expand the dataset, integrate user feedback, and benchmark against other state-of-the-art models to further enhance system performance.


Keywords


Indonesia Tourism; Deep Learning; IndoBERT; TF-IDF; Recommendation System; NLP.

  
  

Full Text:

PDF
  

Article Metrics

Abstract view: 38 times
PDF view: 9 times
     

Digital Object Identifier

doi  https://doi.org/10.33096/ilkom.v17i3.3069.241-251
  

Cite

References


C. Farinha, T. Borges-Tiago, S. Avelar, and A. Baldé, “Technological Adoption in Tourism: Benefits and Barriers Impacting Customer Satisfaction,” Smart Innov. Syst. Technol., vol. 439, pp. 363 – 378, 2025, doi: 10.1007/978-981-96-3081-3_23.

N. L. M. Mahendrawati, “Policy on protection of cultural heritage through communal copyright in supporting sustainable tourism,” J. Environ. Manag. Tour., vol. 11, no. 4, pp. 920 – 924, 2020, doi: 10.14505//jemt.11.4(44).16.

R. Sharma, “Genetic Algorithm Based Personalized Travel Recommendation System,” in 2nd International Conference on Intelligent Data Communication Technologies and Internet of Things, IDCIoT 2024, 2024, pp. 867 – 874. doi: 10.1109/IDCIoT59759.2024.10467470.

P. Chaparala, P. Nagabhushan, L. T. Ponduri, and P. Kummari, “Mapping Item-wise Rating into Attribute-wise Ratings for Enhanced Personalized Recommendations,” in 2024 15th International Conference on Computing Communication and Networking Technologies, ICCCNT 2024, 2024. doi: 10.1109/ICCCNT61001.2024.10724325.

E. Türkel and A. Alpkoçak, “A New Similarity Method for Tourism Recommendation Systems,” Artif. Intell. Theory Appl., vol. 3, no. 2, pp. 77–91, 2023.

G. Chalkiadakis, I. Ziogas, M. Koutsmanis, E. Streviniotis, C. Panagiotakis, and H. Papadakis, “A Novel Hybrid Recommender System for the Tourism Domain,” Algorithms, vol. 16, no. 4, p. 215, 2023, doi: 10.3390/a16040215.

C. Schröer, F. Kruse, and J. M. Gómez, “A Systematic Literature Review on Applying CRISP-DM Process Model,” Procedia Comput. Sci., vol. 181, pp. 526–534, 2021, doi: https://doi.org/10.1016/j.procs.2021.01.199.

M. J. Nodeh, M. H. Calp, and İ. Şahin, “Analyzing and Processing of Supplier Database Based on the Cross-Industry Standard Process for Data Mining (CRISP-DM) Algorithm,” Lect. Notes Data Eng. Commun. Technol., vol. 43, pp. 544 – 558, 2020, doi: 10.1007/978-3-030-36178-5_44.

L. Rahmadi, Hadiyanto, R. Sanjaya, and A. Prambayun, “Crop Prediction Using Machine Learning with CRISP-DM Approach BT - Proceedings of Data Analytics and Management,” A. Swaroop, Z. Polkowski, S. D. Correia, and B. Virdee, Eds., Singapore: Springer Nature Singapore, 2023, pp. 399–421.

J. Schneider, M. Basalla, and S. Seidel, “Principles of green data mining,” in Proceedings of the Annual Hawaii International Conference on System Sciences, 2019, pp. 2065 – 2074. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084268601&partnerID=40&md5=71404958600ace3dbea27590a8995f59

S. Staudinger, C. G. Schuetz, and M. Schrefl, “A Reference Process for Assessing the Reliability of Predictive Analytics Results,” SN Comput. Sci., vol. 5, no. 5, p. 563, 2024, doi: 10.1007/s42979-024-02892-4.

M. Pohl, C. Haertel, D. Staegemann, and K. Turowski, “The Linkage to Business Goals in Data Science Projects,” in Australasian Conference on Information Systems, ACIS 2023, 2023. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85200154270&partnerID=40&md5=fe47a33cec707b0ca22a7ca5dfa308dd

D. S. Haryani, O. Abriyoso, and S. Kurnia, “Study of the Effects of Marketing Mix and Service Quality on Tourists’ Decisions,” J. Environ. Manag. Tour., vol. 13, no. 2, pp. 486 – 496, 2022, doi: 10.14505/jemt.v13.2(58).18.

D. O. Manalu, Y. A. Kusumawati, and C. Tho, “Developing Nusantara Mobile Application to Support Local Tourism in Indonesia,” in Procedia Computer Science, 2023, pp. 641 – 650. doi: 10.1016/j.procs.2023.10.568.

Z. Ma, B. N. Jørgensen, and Z. G. Ma, “A systematic data characteristic understanding framework towards physical-sensor big data challenges,” J. Big Data, vol. 11, no. 1, p. 84, 2024, doi: 10.1186/s40537-024-00942-5.

Z. Ma, B. N. Jørgensen, and Z. G. Ma, “DataPro – A Standardized Data Understanding and Processing Procedure: A Case Study of an Eco-Driving Project,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 15271 LNCS, pp. 136 – 154, 2025, doi: 10.1007/978-3-031-74738-0_10.

R. Nisbet, K. McCormick, and G. Miner, Data Understanding. 2024. doi: 10.1016/B978-0-443-15845-2.00006-2.

F. Hochkamp, A. A. Scheidler, and M. Rabe, “Review of Maturity Models for Data Mining and Proposal of a Data Preparation Maturity Model Prototype for Data Mining,” Computers, vol. 14, no. 4, 2025, doi: 10.3390/computers14040146.

J. Jiao and L. Yuan, “GA-PRE: A Genetic Algorithm-Based Automatic Data Preprocessing Algorithm,” in GECCO 2025 - Proceedings of the 2025 Genetic and Evolutionary Computation Conference, 2025, pp. 1371 – 1378. doi: 10.1145/3712256.3726312.

R. Jevsejev, D. Mazeika, and M. Bereisa, “An Approach for Building IT Support Dataset for Machine Learning Models,” Proc. Open Conf. Electr. Electron. Inf. Sci. eStream, no. 2025, 2025, doi: 10.1109/eStream66938.2025.11016852.

V. Plotnikova, M. Dumas, and F. P. Milani, “Applying the CRISP-DM data mining process in the financial services industry: Elicitation of adaptation requirements,” Data Knowl. Eng., vol. 139, p. 102013, 2022, doi: https://doi.org/10.1016/j.datak.2022.102013.

D. La Torre, D. Liuzzi, M. Repetto, and M. Rocca, “Enhancing deep learning algorithm accuracy and stability using multicriteria optimization: an application to distributed learning with MNIST digits,” Ann. Oper. Res., vol. 339, no. 1–2, pp. 455–475, 2024, doi: 10.1007/s10479-022-04833-x.

M. Elkabalawy, A. Al-Sakkaf, E. Mohammed Abdelkader, and G. Alfalah, “CRISP-DM-Based Data-Driven Approach for Building Energy Prediction Utilizing Indoor and Environmental Factors,” Sustainability, vol. 16, no. 17, 2024, doi: 10.3390/su16177249.

V. J. Raja, M. Dhanamalar, G. Solaimalai, D. L. Rani, P. Deepa, and R. G. Vidhya, “Machine Learning Revolutionizing Performance Evaluation: Recent Developments and Breakthroughs,” in 2nd International Conference on Sustainable Computing and Smart Systems, ICSCSS 2024 - Proceedings, 2024, pp. 780 – 785. doi: 10.1109/ICSCSS60660.2024.10625103.

M. Muntean and F.-D. Militaru, “Metrics for Evaluating Classification Algorithms,” Smart Innov. Syst. Technol., vol. 321, pp. 307 – 317, 2023, doi: 10.1007/978-981-19-6755-9_24.

W. Wei, X. Ding, M. Guo, Z. Yang, and H. Liu, “Review of Text Similarity Calculation Methods,” Jisuanji Gongcheng/Computer Eng., vol. 50, no. 9, pp. 18 – 32, 2024, doi: 10.19678/j.issn.1000-3428.0068086.

Z. Dai, C. Fu, J. Liu, and Q. Long, “Performance Comparison of Multiple Similarity Algorithms in Meteorological Similarity Assessment,” in Procedia Computer Science, 2025, pp. 1021 – 1028. doi: 10.1016/j.procs.2025.05.137.

S. Singh, N. Singh, and V. Singh, “Comparative Analysis of Open Standards for Machine Learning Model Deployments,” Lect. Notes Networks Syst., vol. 321, pp. 499 – 507, 2022, doi: 10.1007/978-981-16-5987-4_51.

V. Nuipian and J. Chuaykhun, “Book Recommendation System based on Course Descriptions using Cosine Similarity,” in ACM International Conference Proceeding Series, 2023, pp. 273 – 277. doi: 10.1145/3639233.3639335.

F. V Krasnov, “Embedding-based retrieval: measures of threshold recall and precision to evaluate product search,” Bus. Informatics, vol. 18, no. 2, pp. 22 – 34, 2024, doi: 10.17323/2587-814X.2024.2.22.34.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Widya Silfianti, Rama Dian Syah, Adang Suhendra, Ali Isra, Astie Darmayantie, Noviawan Rasyid Ohorella

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.