Explainable Boosting Machine for Transparent Risk Assessment in BAZNAS Microfinance Desa
Harjunadi Wicaksono(1*); Agus Riyanto(2); Risanto Darmawan(3); M. Fahmi Hidayat(4); Ali Khumaidi(5);
(1) Universitas Bina Insani
(2) Universitas Bina Insani
(3) Universitas Krisnadwipayana
(4) Kantor Pusat BAZNAS
(5) Universitas Bina Insani
(*) Corresponding Author
AbstractMicrofinance institutions face substantial challenges in managing financing risk, particularly in assessing the creditworthiness of mustahik when available data are limited. BAZNAS Microfinance Desa (BMD) requires a predictive risk system that is both accurate and transparent to ensure program sustainability while adhering to sharia principles. This study develops an Explainable Boosting Machine (EBM) model using historical data from 736 mustahik across three BMD locations (2019-2024). The methodology integrates comprehensive feature engineering, including the DTI Ratio, Savings Ratio, Financial Stress Indicator, and Dependency Ratio. Model performance was evaluated using ROC-AUC, precision-recall metrics, and confusion matrix analysis, while interpretability was examined through SHAP values and partial dependence plots. The EBM model achieved strong predictive performance, recording an ROC-AUC of 0.853, an accuracy of 80%, a precision of 82%, and a recall of 77%. Global interpretability analysis identified Remaining Balance (18.2%), Business Type (12.5%), and Household Income (11.3%) as the most influential predictors. Feature-engineered variables contributed 42% to the model’s predictive strength, confirming the added value of domain-knowledge-driven feature engineering. Critical risk thresholds were identified at Remaining Balance below IDR 200,000 and DTI Ratio above 0.8. The EBM framework effectively balances predictive accuracy with full interpretability, making it suitable for deployment in microfinance decision-support systems. The model provides actionable insights for risk-based pricing and early warning mechanisms while maintaining the transparency essential in microfinance financing. KeywordsExplainable AI; EBM; Machine Learning; Financial Inclusion; BAZNAS Microfinance
|
Full Text:PDF |
Article MetricsAbstract view: 0 timesPDF view: 0 times |
Digital Object Identifier https://doi.org/10.33096/ilkom.v17i3.3214.312-322
|
Cite |
References
J. Siddiki and L. R. Bala-Keffi, “Revisiting the relation between financial inclusion and economic growth: a global analysis using panel threshold regression,” Econ. Model., vol. 135, p. 106707, Jun. 2024, doi: 10.1016/j.econmod.2024.106707.
S. Febriansyah, I. Hamdani, and G. Ikhtiono, “Efektivitas Program Baznas Microfinance di Desa Bojong Rangkas Ciampea Bogor,” El-Mal J. Kaji. Ekon. Bisnis Islam, vol. 2, no. 3, pp. 203–213, Oct. 2021, doi: 10.47467/elmal.v2i3.612.
A. Demirgüç-Kunt, L. Klapper, D. Singer, and S. Ansar, The Global Findex Database 2021. The World Bank, 2022. doi: 10.1596/978-1-4648-1897-4.
T. S. Mohamed and M. M. Elgammal, “Credit risk in Islamic microfinance institutions: The role of women, groups, and rural borrowers,” Emerg. Mark. Rev., vol. 54, p. 100994, Mar. 2023, doi: 10.1016/j.ememar.2022.100994.
T. Widiastuti et al., “Developing an integrated model of Islamic social finance: toward an effective governance framework,” Heliyon, vol. 8, no. 9, p. e10383, Sep. 2022, doi: 10.1016/j.heliyon.2022.e10383.
N. Kasanah and A. Setyawan, “Baznas Microfinance Desa for MicroenterprisesEmpowerment within The SGDs Framework,” JOIPAD J. Islam. Philanthr. Disaster, vol. 4, no. 2, 2024, doi: 10.21154/joipad.v4i2.10022.
C. Wang and H. Yu, “Intelligent Assessment of Personal Credit Risk Based on Machine Learning,” Systems, vol. 13, no. 2, p. 112, Feb. 2025, doi: 10.3390/systems13020112.
F. H. Jaber, “Cognitive Biases and Behavioral Patterns Shaping Investment Decision-Making,” Acad. Open, vol. 10, no. 2, Aug. 2025, doi: 10.21070/acopen.10.2025.12142.
J. Alvi, I. Arif, and K. Nizam, “Advancing financial resilience: A systematic review of default prediction models and future directions in credit risk management,” Heliyon, vol. 10, no. 21, p. e39770, Nov. 2024, doi: 10.1016/j.heliyon.2024.e39770.
L. Sanz Martín, J. Parra Dominguez, J. M. Corchado, E. Zafra-Gómez, V. Castillo-Ramos, and J. L. Zafra-Gómez, “Recent evolution and growth of AI and advanced technologies in accounting and finance: systematic review and bibliometric analysis,” Spanish J. Financ. Account. / Rev. Española Financ. y Contab., pp. 1–42, Nov. 2025, doi: 10.1080/02102412.2025.2582120.
H. Daiya, “AI-Driven Risk Management Strategies in Financial Technology,” J. Artif. Intell. Gen. Sci. ISSN3006-4023, vol. 5, no. 1, pp. 194–216, Jul. 2024, doi: 10.60087/jaigs.v5i1.194.
A. Mishra, V. S. Jatti, E. M. Sefene, and S. Paliwal, “Explainable Artificial Intelligence (XAI) and Supervised Machine Learning-based Algorithms for Prediction of Surface Roughness of Additively Manufactured Polylactic Acid (PLA) Specimens,” Appl. Mech., vol. 4, no. 2, pp. 668–698, May 2023, doi: 10.3390/applmech4020034.
I. H. Sugozu, C. Verberi, and S. Yasar, “Machine learning approaches to credit risk: Evaluating Turkish participation and conventional banks,” Borsa Istanbul Rev., vol. 25, no. 3, pp. 497–512, May 2025, doi: 10.1016/j.bir.2025.02.001.
Z. Ying, A. G. Bellotti, J. L. Breeden, and D. Towey, “Metamorphic Testing and exploration for Machine Learning credit score models,” Inf. Softw. Technol., vol. 188, p. 107903, Dec. 2025, doi: 10.1016/j.infsof.2025.107903.
Y. Xia, Z. Han, Y. Li, and L. He, “Credit scoring model for fintech lending: An integration of large language models and FocalPoly loss,” Int. J. Forecast., vol. 41, no. 3, pp. 894–919, Jul. 2025, doi: 10.1016/j.ijforecast.2024.07.005.
M. M. Alshater, I. Saba, I. Supriani, and M. R. Rabbani, “Fintech in islamic finance literature: A review,” Heliyon, vol. 8, no. 9, p. e10385, Sep. 2022, doi: 10.1016/j.heliyon.2022.e10385.
U. P. Offiong and K. Szopik-Depczyńska, “Analysing FinTech in Microfinance: Methodological frameworks and review of research approaches,” Procedia Comput. Sci., vol. 246, pp. 802–810, 2024, doi: 10.1016/j.procs.2024.09.499.
W. J. Yeo, W. Van Der Heever, R. Mao, E. Cambria, R. Satapathy, and G. Mengaldo, “A comprehensive review on financial explainable AI,” Artif. Intell. Rev., vol. 58, no. 6, p. 189, Mar. 2025, doi: 10.1007/s10462-024-11077-7.
P. Linardatos, V. Papastefanopoulos, and S. Kotsiantis, “Explainable AI: A Review of Machine Learning Interpretability Methods,” Entropy, vol. 23, no. 1, p. 18, Dec. 2020, doi: 10.3390/e23010018.
B. Rasiklal Yadav, “The Ethics of Understanding: Exploring Moral Implications of Explainable AI,” Int. J. Sci. Res., vol. 13, no. 6, pp. 1–7, Jun. 2024, doi: 10.21275/SR24529122811.
A. B. Rimba, I. Sato, and K. Endo, “Localization and its impact on achieving SDGs and transitioning to post-SDGs in Indonesia,” Environ. Sustain. Indic., vol. 28, p. 100926, Dec. 2025, doi: 10.1016/j.indic.2025.100926.
S. Wang, R. Li, and H. Wu, “Integrating machine learning with linguistic features: A universal method for extraction and normalization of temporal expressions in Chinese texts,” Comput. Methods Programs Biomed., vol. 233, p. 107474, May 2023, doi: 10.1016/j.cmpb.2023.107474.
M. Schulte and A. Winkler, “Drivers of solvency risk – Are microfinance institutions different?,” J. Bank. Financ., vol. 106, pp. 403–426, Sep. 2019, doi: 10.1016/j.jbankfin.2019.07.009.
S. Alam, M. S. Ayub, S. Arora, and M. A. Khan, “An investigation of the imputation techniques for missing values in ordinal data enhancing clustering and classification analysis validity,” Decis. Anal. J., vol. 9, p. 100341, Dec. 2023, doi: 10.1016/j.dajour.2023.100341.
Z. Gu, J. Lv, B. Wu, Z. Hu, and X. Yu, “Credit risk assessment of small and micro enterprise based on machine learning,” Heliyon, vol. 10, no. 5, p. e27096, Mar. 2024, doi: 10.1016/j.heliyon.2024.e27096.
J. Jemai and A. Zarrad, “Feature Selection Engineering for Credit Risk Assessment in Retail Banking,” Information, vol. 14, no. 3, p. 200, Mar. 2023, doi: 10.3390/info14030200.
P. A. Mohd Hidzir, S. Ismail, S. H. Syed Nor, and A. N. Md Sahiq, “Financial Well-Being of Micro-Entrepreneurs: A Proposed Conceptual Framework,” Inf. Manag. Bus. Rev., vol. 15, no. 3(I), pp. 418–428, Oct. 2023, doi: 10.22610/imbr.v15i3(I).3552.
K. Li, F. Wang, L. Yang, and R. Liu, “Deep feature screening: Feature selection for ultra high-dimensional data via deep neural networks,” Neurocomputing, vol. 538, p. 126186, Jun. 2023, doi: 10.1016/j.neucom.2023.03.047.
O. O. Awe, O. A. Olaniyan, A. E. Olatunde, R. SewPaul, and N. Dukhi, “A comparative analysis of generalized additive models for obesity risk prediction,” Healthc. Anal., vol. 8, p. 100410, Dec. 2025, doi: 10.1016/j.health.2025.100410.
F. Hosseini, C. Prieto, and C. Álvarez, “Hyperparameter optimization of regional hydrological LSTMs by random search: A case study from Basque Country, Spain,” J. Hydrol., vol. 643, p. 132003, Nov. 2024, doi: 10.1016/j.jhydrol.2024.132003.
C. P. J. Chen, R. R. White, and R. Wright, “Common pitfalls in evaluating model performance and strategies for avoidance in agricultural studies,” Comput. Electron. Agric., vol. 234, p. 110126, Jul. 2025, doi: 10.1016/j.compag.2025.110126.
E. S. Ortigossa, T. Gonçalves, and L. G. Nonato, “EXplainable Artificial Intelligence (XAI)—From Theory to Methods and Applications,” IEEE Access, vol. 12, pp. 80799–80846, 2024, doi: 10.1109/ACCESS.2024.3409843.
S. Lin, D. Song, B. Cao, X. Gu, and J. Li, “Credit risk assessment of automobile loans using machine learning-based SHapley Additive exPlanations approach,” Eng. Appl. Artif. Intell., vol. 147, p. 110236, May 2025, doi: 10.1016/j.engappai.2025.110236.
S. M. Lundberg et al., “From local explanations to global understanding with explainable AI for trees,” Nat. Mach. Intell., vol. 2, no. 1, pp. 56–67, Jan. 2020, doi: 10.1038/s42256-019-0138-9.
L. Ehrlinger and W. Wöß, “A Survey of Data Quality Measurement and Monitoring Tools,” Front. Big Data, vol. 5, Mar. 2022, doi: 10.3389/fdata.2022.850611.
F. Gurcan and A. Soylu, “Learning from Imbalanced Data: Integration of Advanced Resampling Techniques and Machine Learning Models for Enhanced Cancer Diagnosis and Prognosis,” Cancers (Basel)., vol. 16, no. 19, p. 3417, Oct. 2024, doi: 10.3390/cancers16193417.
B. K. Shano and S. S. Waje, “Understanding the heterogeneous effect of microcredit access on agricultural technology adoption by rural farmers in Ethiopia: A meta-analysis,” Heliyon, vol. 10, no. 16, p. e35859, Aug. 2024, doi: 10.1016/j.heliyon.2024.e35859.
L. Oneto, S. Ridella, and D. Anguita, “Informed Machine Learning: Excess risk and generalization,” Neurocomputing, vol. 646, p. 130521, Sep. 2025, doi: 10.1016/j.neucom.2025.130521.
Z. Yang, W. Z. Wang, Z. Wang, M. Deveci, and D. Delen, “Enhancing financial resilience in manufacturing SMEs: A q-rung picture fuzzy set-based decision framework for digital transformation adoption,” Appl. Soft Comput., vol. 184, p. 113819, Dec. 2025, doi: 10.1016/j.asoc.2025.113819.
C. Magri, F. Bertacchini, and P. L. Marchini, “Resolution of financial distress in SMEs: How do family ownership and involvement affect second chance?,” J. Fam. Bus. Strateg., vol. 16, no. 3, p. 100673, Sep. 2025, doi: 10.1016/j.jfbs.2025.100673.
W. Sun, X. Zhang, M. Li, and Y. Wang, “Interpretable high-stakes decision support system for credit default forecasting,” Technol. Forecast. Soc. Change, vol. 196, p. 122825, Nov. 2023, doi: 10.1016/j.techfore.2023.122825.
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Harjunadi Wicaksono, Agus Riyanto, Risanto Darmawan, M. Fahmi HidayatAli Khumaidi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.





