Palm oil extraction rate prediction based on the fruit ripeness levels using C4.5 algorithm


Wahyu Supriyatin(1*);

(1) Universitas Gunadarma
(*) Corresponding Author

  

Abstract


Oil palm plantations are one of the main keys in supporting Indonesias economic growth. The rising consumption needs for palm oil products make it necessary to carry out data mining activities to increase CPO production. The maturity factor of palm fruit dramatically affects the quality of the oil extraction content (CPO yield) produced. This study aims to investigate the effect of fruit ripeness on the yield of CPO by using a data mining classification method with a decision tree. The algorithm used to generate decision tree classification is the C4.5 algorithm. The implementation of the C4.5 algorithm in the study was carried out using the Rapid Miner Studio 5.2 tools. The results shows that the yield of CPO is influenced by the attributes of the condition of the long and ripe fruit, the condition of the long and overripe fruit, the normal condition of the fruit and the age of 3-6 years and the condition of the fruit of normal and age of 7-10 years. Decision tree C4.5 algorithm generates 8 rules with 4 rules showing a high production value, which means that the four rules affect the yield of CPO.


Keywords


Algorithm C4.5; Data Mining; Oil Extraction Rate; Fruit Ripeness; Classification

  
  

Full Text:

PDF
  

Article Metrics

Abstract view: 311 times
PDF view: 68 times
     

Digital Object Identifier

doi  https://doi.org/10.33096/ilkom.v13i2.714.92-100
  

Cite

References


P. A. Lukito and Sudrajat, "The Effect of Palm Oil Fruit Brunch Injury to Free Fatty Acid Content and CPO Rendemen at Talisayan 1 Estate Berau," Bul. Agrohorti, vol. 5, no. 1, pp. 37-44, 2017.

N. Fitrya, S. P. Wirman and W. Fitri, "Identifikasi Karakteristik Buah Kelapa Sawit Siap Panen Dengan Metode Laser Spekel Imaging (LSI)," Jurnal Photon, vol. 9, no. 1, pp. 139-142, 2018.

F. Insani, I. Harani, S. Sanjaya and Yusra, "Peramalan Produksi Tandan Buah Segar (TBS) Kelapa Sawit Dengan Regresi Linear Dan Algoritma Genetik (Studi Kasus : PT. Peputra Masterindo)," in Seminar Nasional Teknologi Informasi, Komunikasi dan Industri (SNTIKI) 11, Pekanbaru, 2019.

P. Imam and I. B. A. K. Santosa, "The Use of Multivariate Linear Regression to Analyse The Accuracy of Determination of Model Prediction of Free Fatty Acid and DOBI at Sterilization Fresh Fruit Bunch," Jurnal Teknologi dan Industri Pertanian Indonesia, vol. 9, no. 2, pp. 55-64, 2017.

J. Supriadi, G. Tabrani and Isnaini, "The Criteria of Palm Oil Ripe Level (Elaeis Guineensis Jacq.) as the Reap Indicator Observed from Morphological Characteristics," JOMFAPERTA, vol. 6, no. 1, pp. 1-9, 2019.

R. Salambue and M. Shiddiq, "Klasifikasi Kematangan Buah Sawit Menggunakan Model Warba RGB," in Seminar Nasional APTIKOM (SEMNASTIK), Semarang, 2019.

B. Sugara, D. Widyatmoko, B. S. Prakoso and D. M. Saputro, "Penerapan Algoritma C4.5 Untuk Deteksi Dini Gangguan Autisme Pada Anak," in Seminar Nasional Teknologi Informasi dan Komunikasi (SENTIKA), Yogyakarta, 2018.

H. D. Honesqi, "Klasifikasi Data Mining Untuk Menentukan Tingkat Persetujuan Kartu Kredit," Jurnal TEKNOIF, vol. 5, no. 2, pp. 57-62, 2017.

R. H. Pambudi, B. D. Setiawan and Indriati, "Penerapan Algoritma C4.5 Untuk Memprediksi Nilai Kelulusan Siswa Sekolah Menengah Berdasarkan Faktor Eksternal," Jurnal pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 7, pp. 2637-2643, 2018.

Y. Mardi, "Data Mining : Kalsifikasi Menggunakan Algoritma C4.5," Jurnal Edik Informatika, vol. 2, no. 2, pp. 213-219, 2017.

N. Azwanti, "Analisa Algoritma C4.5 Untuk Memprediksi Penjualan Motor pada PT. Capella Dinamik Nusantara Cabang Muka Kuning," Informatika Mulawarman : Jurnal Ilmiah Ilmu Komputer, vol. 13, no. 1, pp. 33-38, 2018.

S. Hendrian, "Algoritma Klasifikasi Data Mining Untuk Memprediksi Siswa Dalam Memperoleh Bantuan Dana Pendidikan," Faktor Exacta, vol. 11, no. 3, pp. 266-274, 2018.

I. R. Purba, Irsal and Meiriani, "The Relationship between Fraction of Fruit Maturity and Height of Fruit Bunches to the Number of Oil Palm Fruit at Harvesting Oil Palm (Elaeis guineensis Jacq)nin Palm Plantation Rambutan PT. Perkebunan Nusantara III," Jurnal Agroekoteknologi FP USU, vol. 5, no. 2, pp. 315-328, 2017.

F. Rahmadhania, P. Sembiring and M. A. Sinaga, "The Effect of Palm Oil Fruit Maturity DxP Bah Lias Variety to the Crude Palm Oil Content," Jurnal Argo Estate, vol. 3, no. 1, pp. 1-9, 2019.

I. U. P. Rangkuti, "Oil Extraction Rate and Minor Components Based on Level Ripeness of Crude Palm Oil at High Altitudes," Argotekma : Jurnal Agroteknologi dan Ilmu Pertanian, vol. 3, no. 1, pp. 10-16, 2018.

H. Ishak, M. Shiddiq, R. H. Fitra and N. Z. Yasmin, "Ripeness Level Classification of Oil Palm Fresh Fruit Bunch Using Laser Induced Fluorescence Imaging," J. Aceh Phys. Soc., vol. 8, no. 3, pp. 84-89, 2019.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Wahyu Supriyatin

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 ILKOM Jurnal Ilmiah indexed by

doaj_logoDimensions_logoCROSSREF_logoROAD_logoPKP_Index_logoGoogle_Scholar_logosinta_logogaruda_logoonesearch_logoBASE_logoWordcat_logo

___________________________________________________________
ILKOM Jurnal Ilmiah
ISSN 2548-7779
Published by Prodi Teknik Informatika FIK Universitas Muslim Indonesia
W : https://fikom.umi.ac.id/
E : jurnal.ilkom@umi.ac.id

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0