Visitor satisfaction prediction of the 'Pantai Pohon Cinta' beach tourism using the backpropagation algorithm with particle swarm optimization feature selection
Annahl Riadi(1); Marniyati Husain Botutihe(2*);
(1) Universitas Pohuwato
(2) Universitas Pohuwato
(*) Corresponding Author
AbstractThis study focuses on the visitors of Pohon Cinta beach tourist area. This beach is one of the potential tourism objects in Pohuwato Regency. The main problem that frequently occurs is that many visitors cannot directly convey their impression when visiting and enjoying the beauty of the Pohon Cinta beach. The government needs to know the level of visitor satisfaction to attempt to improve and develop the Pohon Cinta beach tourist attraction. Thus, to solve the problem above, a method that can help predict visitor satisfaction is needed. This study aims to measure visitor satisfaction through predictions using the Backpropagation algorithm and PSO feature selection to assist the government in developing tourism potential in Pohuwato Regency. The method used is the backpropagation algorithm for prediction and Particle Swarm Optimization which is considered effective in overcoming optimization problems. This algorithm is considered capable of solving problems in the backpropagation algorithm. The accuracy value of the backpropagation algorithm model is 84.67%, the accuracy value of the PSO-based backpropagation algorithm model is 85.00%, and the difference in accuracy is 0.33. The results of the application of the Backpropagation algorithm and Particle Swarm Optimization can increase the predictive accuracy value of visitor satisfaction at the Cinta Tree Beach tourist attraction.
KeywordsPrediction; Visitors; Tour; Backpropagation; PSO
|
Full Text:PDF |
Article MetricsAbstract view: 317 timesPDF view: 154 times |
Digital Object Identifierhttps://doi.org/10.33096/ilkom.v13i2.791.117-124 |
Cite |
References
Nawangsari, D. Muryani, C. dan Utomowati, R, Pengembangan Wisata Pantai Desa Watu Karung dan Desa Sendang Kabupaten Pactan, Jurnal GeoEco. Volume 4, Nomor 1, 31-40, 32. 2018.
Alan. Layak Jadi Destinasi Andalan Gorontalo, Pohuwato: Portal Pohuwato. 2016. 24 Januari, 2020. https://pohuwatokab.go.id/ [akses 24 Januari, 2020]
Nurmiah. Rahmawati, Persepsi Pengunjung Terhadap Visual Fungsional Kawasan Pasca Revitalisasi, Gorontalo: Journal of Infrastructure & Science Engineering Vol 2 Nomor 2 Oktober 2019
Rizky. Aulia, Prediksi Kemacetan Angsuran Leasing Motor Menggunakan Algoritma Backpropagation Neural Network Berbasis Particle Swarm Optimization, Banjarmasin: Jurnal Technologia Vol 8, No.4, Oktober-Desember 2017
Pujianto. Ade. Kusrini. Andi Sunyoto, Perancangan Sistem Pendukung Keputusan Untuk Prediksi Penerima Beasiswa Menggunakan Metode Neural Network Backpropagation, Yogyakarta: Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK) Vol. 5, No. 2, Mei 2018
Sari, Febrina. Implementasi Data Mining Dalam Menganalisis Tingkat Kepuasan Pelanggan Menggunakan Metode Rough Set, Jurnal Buana Informatika Volume 8 Nomor 1. 2017
Dika. Harry dkk, Implementasi Algoritma C4.5 Terhadap Kepuasan Pelanggan, Bandung: Universitas Islam Bandung. 2016
Darmawan. Agus. Dkk, Implementasi Data mining Menggunakan Model SVM Untuk Prediksi Kepuasan Pengunjung Taman Tabebuya, Indraprasta : Jurnal String Vol. 2 No. 3 April 2018
X. Shao. 2011, Based on Two Swarm Optimized Algorithm of Neural Network to Prediction the Switchs Traffic of Coal, 2011 International Symposium on Computer Science and Society, pp. 299302, Jul. 2011.
A. Idris, M. Rizwan, and A. Khan, Churn prediction in telecom using Random Forest and PSO based data balancing in combination with various feature selection strategies, Computers & Electrical Engineering, vol. 38, no. 6, pp. 18081819, Nov. 2012R. Nicole, Title of paper with only first word capitalized, J. Name Stand. Abbrev., in press.
Asih. Imelda, dkk, Penerapan Algoritma Backpropagation dalam Memprediksi Persentase Penduduk Buta Huruf di Indonesia, Jurnal Informatika Upgris. DOI: 10.26877/jiu.v4i2.2423. 2018
Handayanto. Rahmadya Trias dan Herlawati, Machine Learning Berbasis Desktop dan Web dengan Metode Jaringan Syaraf Tiruan Untuk Sistem Pendukung Keputusan, Jakarta: Jurnal Komtika (Komputasi dan Informatika), Vol. 4 No. Mei 2020
Khademi. F, dan Jamal, S. M, RESEARCH PAPERS PREDICTING THE 28 DAYS COMPRESSIVE STRENGTH OF, I-Managers Journal on Civil Engineering, 6(August), 17. 2016
Asril, Jaringan Syaraf Tiruan Backpropagation Untuk Prediksi Jumlah Pengunjung Kolam Renang Kolam Renang, Jurnal SIMTIKA Volume 2 No 1. 2019
Wang, X., Wen, J., Zhang, Y., & Wang, Y. (2014). Optik Real estate price forecasting based on SVM optimized by PSO. Optik - International Journal for Light and Electron Optics, 125(3), 14391443.
Apandi. Tri Herdiawan. Castaka Agus Sugianto, Algoritma Naive Bayes untuk Prediksi Kepuasan Pelayanan Perekaman e-KTP, Bandung: JUITA: Jurnal Informatika e-ISSN: 2579-9801; Volume 7, Nomor 2, November 2019
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Marniyati Husain Botutihe
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.