Clustering of the Potential of Customers' Internet Bandwidth Upgrade on FTTH Broadband


Sasa Ani Arnomo(1*); Yulia Yulia(2);

(1) Universitas Putera Batam
(2) STIE Nagoya Indonesia
(*) Corresponding Author

  

Abstract


Increasing customer bandwidth needs to be considered by companies by determining potential customers. Potential determination is needed because previously it was only done randomly. Therefore, first determining the potential is needed by grouping customers who have the same characteristics based on the data and attributes they have. This research will implement data mining technique with clustering method with K-means algorithm on 263 FTTH Broadband customer groups. Then the potency can be determined based on the final centroid point in the grouping. The results obtained are divided into 5 clusters consisting of 34 customers or 12.92% of the total potential customers, 29 customers or 11.02% of the total potential customers, 56 customers or 21.30% of the total potential customers, 54 customers. or 20.53% of the total fewer potential customers and 90 customers or 34.22% of the total non-potential customers. Comparison of the validity of the Davies-Bouldin Index cluster for 5 groups between K-Means and K-Medoids, the value of 0.538 for K-Means and 0.819 for K-Medoids is obtained. This method is used to streamline the distribution of bandwidth.

Keywords


Potential Upgrades; Bandwidth; Broadband; FTTH; Cluster

  
     

Article Metrics

Abstract view: 15 times
     

Digital Object Identifier

  

Cite

References


T. Hao, A. Sanchez-Postigo, P. Cheben, A. Ortega-Monux, and W. N. Ye, “Dual-Band Polarization-Independent Subwavelength Grating Coupler for Wavelength Demultiplexing,” IEEE Photonics Technol. Lett., vol. 32, no. 18, pp. 1163–1166, 2020.

D. Kuswoyo and N. Agani, “Model Perhitungan Kebutuhan Bandwidth Jaringan Komputer menggunakan Sistem Pakar Fuzzy dengan Metode Adaptive Neuro Fuzzy Inference System ( ANFIS ) :,” vol. 3, no. 3, pp. 1–15, 2015.

M. Yang, Y. Lian, J. Wang, and Y. Zhang, “Dual-Mode Large-Mode-Area Multicore Fiber With Air-Hole Structure,” IEEE Photonics J., vol. 11, no. 4, pp. 1–10, 2019.

D. P. Hidayatullah, R. I. Rokhmawati, and A. R. Perdanakusuma, “Analisis Pemetaan Pelanggan Potensial Menggunakan Algoritma K-Means dan LRFM Model Untuk Mendukung Strategi Pengelolaan Pelanggan ( Studi Pada Maninjau Center Kota Malang ),” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 2, no. 8, pp. 2406–2415, 2018.

N. D. Prasongko and R. Gernowo, “Metode Quality Function Deployment Dan Fuzzy Topsis Untuk Sistem Pendukung Keputusan Pemilihan Perusahaan Penyedia Jasa Internet,” J. Sist. Inf. BISNIS, vol. 5, no. 2, pp. 137–144, 2015.

N. E. Fardani, “Analisis Faktor-Faktor yang Mempengaruhi Loyalitas Pelanggan Mobile Broadband Services Telkomsel di Kota Bandung Tahun 2014,” vol. 151, no. 2, pp. 10–17, 2015.

A. Fitriyani, T. N. Damayanti, and M. S. Yudha, “Perancangan Jaringan Fiber To The Home (FTTH) Perumahan Nataendah Kopo,” e-Procceding Appl. Sci. Vol.1, No.2 Agustus 2915, vol. 4, no. 3, pp. 3565–3572, 2017.

F. Fitriastuti and D. P. Utomo, “Implementasi Bandwith Management Dan Firewall System Menggunakan Mikrotik OS 2.9.27,” J. Tek., vol. 4, no. 1, pp. 1–9, 2014.

F. N. Khasanah, “Performa Kecepatan Akses Internet Dengan Squid Proxy Server Pada Ubuntu Server 10.10 Fata,” Informatics Educ. Prof., vol. 2, no. 1, pp. 11–18, 2017.

A. Naleng, H. Manossoh, and S. S. Tangkuman, “Analisis Potensi Dan Efektivitas Pemungutan Retribusi Pasar Di Kabupaten Kepulauan Siau Tagulandang Biaro,” J. EMBA J. Ris. Ekon. Manajemen, Bisnis dan Akunt., vol. 5, no. 2, pp. 2240–2249, 2017.

S. A. Arnomo, “Pengaruh Sistem Informasi Pemasaran dan Loyalitas Konsumen Terhadap Kinerja Pemasaran,” 2012.

A. Darmawan, N. Kustian, and W. Rahayu, “Implementasi Data Mining Menggunakan Model SVM untuk Prediksi Kepuasan Pengunjung Taman Tabebuya,” STRING (Satuan Tulisan Ris. dan Inov. Teknol., vol. 2, no. 3, p. 299, 2018.

S. Beniwal and J. Arora, “Classification and Feature Selection Techniques in Data Mining,” Int. J. Eng. Res. Technol., vol. 1, no. 6, pp. 1–6, 2012.

L. Xu, C. Jiang, J. Wang, J. Yuan, and Y. Ren, “Information security in big data: Privacy and data mining,” IEEE Access, vol. 2, pp. 1149–1176, 2014.

R. Sowmya and K. R. Suneetha, “Data Mining with Big Data,” in Proceedings of 2017 11th International Conference on Intelligent Systems and Control, ISCO 2017, 2017, vol. 26, no. 1, pp. 246–250.

S. Li, D. C. Yen, W. Lu, and C. Wang, “Identifying the signs of fraudulent accounts using data mining techniques,” Comput. Human Behav., vol. 28, no. 3, pp. 1002–1013, 2012.

Z. Ge, Z. Song, S. X. Ding, and B. Huang, “Data Mining and Analytics in the Process Industry: The Role of Machine Learning,” IEEE Access, vol. 5, pp. 20590–20616, 2017.

Y. Siyamto, “Pemanfaatan Data Mining Dengan Metode Clustering Untuk Evaluasi Biaya Dokumen Ekspor Di Pt Winstar Batam,” Media Inform. Budidarma, vol. 1, no. 2, pp. 28–31, 2017.

P. Arora, Deepali, and S. Varshney, “Analysis of K-Means and K-Medoids Algorithm for Big Data,” in Physics Procedia, 2016, vol. 78, no. December 2015, pp. 507–512.

S. Gopalani and R. Arora, “Comparing Apache Spark and Map Reduce with Performance Analysis using K-Means,” Int. J. Comput. Appl., vol. 113, no. 1, pp. 8–11, 2015.

K. Handoko and L. S. Lesmana, “Data Mining Pada Jumlah Penumpang Menggunakan Metode Clustering,” Snistek, no. 1, pp. 97–102, 2018.

M. A. Rahman and M. Z. Islam, “A hybrid clustering technique combining a novel genetic algorithm with K-Means,” Knowledge-Based Syst., vol. 71, no. August, pp. 345–365, 2014.

P. S. Hasugian, “Penerapan Data Mining untuk Klasifikasi Produk Menggunakan Algoritma K-Means (Studi Kasus : Toko Usaha Maju Barabai),” J. Mantik Penusa, vol. 2, no. 2, pp. 191–198, 2018.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Sasa Ani Arnomo

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

 ILKOM Jurnal Ilmiah indexed by

doaj_logoCROSSREF_logoROAD_logoPKP_Index_logoGoogle_Scholar_logosinta_logogaruda_logoonesearch_logoBASE_logoWordcat_logo

___________________________________________________________
ILKOM Jurnal Ilmiah
ISSN 2548-7779
Published by Teknik Informatika Fakultas Ilmu Komputer Universitas Muslim Indonesia
W : https://fikom.umi.ac.id/
E : jurnal.ilkom@umi.ac.id

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0