Classification model of Toraja arabica coffee fruit ripeness levels using convolution neural network approach


Aryo Michael(1*); Melki Garonga(2);

(1) Universitas Kristen Indonesia Toraja
(2) Universitas Kristen Indonesia Toraja
(*) Corresponding Author

  

Abstract


The purpose of this study is to design a CNN deep learning algorithm model that can classify the maturity level of Arabica coffee fruit based on image, the resulting model can be applied to a coffee bean sorting device based on artificial intelligence so that problems that exist in the process of sorting arabica coffee fruit that meets the standards can be avoided, to improve the quality of arabica Toraja coffee products. The research began from the collection of data in the form of raw Arabica coffee image Toraja as many as 4000 images of arabica coffee fruit with 4 categories, half-cooked, perfectly ripe, and mature old. CNN basic architecture is created using images with a size of 128x128 pixels, 4 convolution layers using 3x3 filters opening 32, 64, 128, and 256 with ReLU activation, followed by a poll layer with a 2x2 filter. The full connected layer uses 2 hidden layers with dropout layers. The training model was conducted with a 5-fold cross-validation method using epoch 100, 'adam' optimization algorithm with a learning rate of 0.0001, and batch size 10. The success of a model is seen based on the calculation of the confusion matrix. The test results showed that the accuracy rate of the third model using a combination of max polling and average polling performed best with an introduction accuracy of 98.75%, the first model used max polling with an accuracy of 98.25% while the lowest accuracy on the second model used average polling with an accuracy of 97.75%.

Keywords


Deep Learning; Convolution Neural Network; Image Processing; Classification; Arabica Coffee

  
  

Full Text:

PDF
  

Article Metrics

Abstract view: 680 times
PDF view: 273 times
     

Digital Object Identifier

doi  https://doi.org/10.33096/ilkom.v13i3.861.226-234
  

Cite

References


H. Syahputra, F. Arnia, and K. Munadi, Karakterisasi Kematangan Buah Kopi Berdasarkan Warna Kulit Kopi Menggunakan Histogram dan Momen Warna, J. Nas. Tek. Elektro, vol. 8, no. 1, p. 42, 2019, doi: 10.25077/jnte.v8n1.615.2019.

Widyaningsih, I. I. Tritosa, and N. C. Kumalasari, Perbandingan Klasifikasi Tingkat Kematangan Buah Kopi Menggunakan Metode Fuzzy Logic Dan K-Nearest Neighbor Dengan Ekstraksi Ciri Gray Level Co-Occurrence Matrix Comparison of Coffee Cherries Ripeness Using Fuzzy Logic and K- Nearest Neighbor Method With, vol. 7, no. 2, pp. 40604073, 2020.

E. H. Rachmawanto and A. Salam, Pengukuran Tingkat Kematangan Kopi Robusta menggunakan Algoritma K-Nearest Neighbor, in Prosiding SENDI_U, 2018, pp. 978979.

W. A. Pulungan, Y. Mulyani, and W. E. Sulistiono, Identifikasi Kematangan Buah Kopi Menggunakan Jaringan Syaraf Tiruan Learning Vector Quantization, Barometer, vol. 4, no. 2, p. 217, 2019, doi: 10.35261/barometer.v4i2.1834.

M. Rioarda, B. Fatkhurrozi, and I. Setyowati, Klasifikasi Tingkat Kematangan Buah Kopi Menggunakan Algoritma Fuzzy C Means, THETA OMEGA J. Electr. Eng. Comput. Inf. Technol., vol. 2, no. 1, 2021, [Online]. Available: https://jurnal.untidar.ac.id/index.php/thetaomega/article/view/3913/1895.

I. W. Suartika, A. Y. Wijaya, and R. Soelaiman, Klasifikasi Citra Menggunakan Convolutional Neural Network ( Cnn ) pada Caltech 101, J. Tek. ITS, vol. 5, no. 1, pp. A65A69, 2016, [Online]. Available: ejurnal.its.ac.id/index.php/teknik/article/viewFile/15696/2553.

A. M. Rizki and N. Marina, Klasifikasi Kerusakan Bangunan Sekolah Menggunakan Metode Convolutional Neural Network Dengan Pre-Trained Model Vgg-16, J. Ilm. Teknol. dan Rekayasa, vol. 24, no. 3, pp. 197206, 2019, doi: 10.35760/tr.2019.v24i3.2396.

L. Alzubaidi et al., Review of deep learning: concepts, CNN architectures, challenges, applications, future directions, vol. 8, no. 1. Springer International Publishing, 2021.

A. Taner, Y. B. ztekin, and H. Duran, Performance Analysis of Deep Learning CNN Models for Variety Classification in Hazelnut, Sustainability, vol. 13, no. 12, p. 6527, 2021, doi: 10.3390/su13126527.

A. Peryanto, A. Yudhana, and R. Umar, Klasifikasi Citra Menggunakan Convolutional Neural Network dan K Fold Cross Validation, J. Appl. Informatics Comput., vol. 4, no. 1, pp. 4551, 2020, doi: 10.30871/jaic.v4i1.2017.

S. Ilahiyah and A. Nilogiri, Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural Network, JUSTINDO (Jurnal Sist. dan Teknol. Inf. Indones., vol. 3, no. 2, pp. 4956, 2018.

H. Azis, P. Purnawansyah, F. Fattah, and I. P. Putri, Performa Klasifikasi K-NN dan Cross Validation Pada Data Pasien Pengidap Penyakit Jantung, Ilk. J. Ilm., vol. 12, no. 2, pp. 8186, 2020, doi: 10.33096/ilkom.v12i2.507.81-86.

Y. Ba?tanlar and M. Ozuysal, Introduction to Machine Learning Second Edition, vol. 1107. 2014.

A. Tharwat, Classification Assessment Methods, Appl. Comput. Informatics, vol. 17, no. 1, pp. 168192, 2018, doi: 10.1016/j.aci.2018.08.003.

I. M. Erwin, R. Risnandar, E. Prakarsa, and B. Sugiarto, Kayu7net: Identifikasi dan Evaluasi F-Measure Citra Kayu berbasis Deep Convolutional Neural Network (DCNN), J. Teknol. Inf. dan Ilmu Komput., vol. 7, no. 6, p. 1089, 2020, doi: 10.25126/jtiik.2020712663.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Aryo Michael, Melki Garonga

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.