K-means algorithm for clustering system of plant seeds specialization areas in east Aceh

Rozzi Kesuma Dinata(1*); Novia Hasdyna(2); Sujacka Retno(3); Muhammad Nurfahmi(4);

(1) Universitas Malikussaleh
(2) Universitas Islam Kebangsaan Indonesia
(3) Universitas Islam Kebangsaan Indonesia
(4) Universitas Malikussaleh
(*) Corresponding Author



The number of regions and types of plants in East Aceh Regency requires a data clustering process in order to easily find out which areas are most in-demand based on the type of plants. This study applies the k-means algorithm to classify the data. The data used in this study were obtained from the Department of Agriculture, Food Crops and Horticulture, East Aceh Regency. Based on the test results with k-means, the average number of iterations in the 2015-2019 data is 8,7,6,4,3 iterations for each commodity. The test results can show areas of interest for plant seeds with clusters of high demand, attractive, and less desirable. The system in this study was built based on the web using the PHP programming language.


K-means; Clustering; Areas of Interest; Seed plant; East Aceh


Full Text:


Article Metrics

Abstract view: 335 times
PDF view: 99 times

Digital Object Identifier

doi  https://doi.org/10.33096/ilkom.v13i3.863.235-243



S. R. O. S. Chan Industri Perbenihan dan Pembibitan Tanaman Hortikultura di Indonesia : Kondisi Terkini dan Peluang Bisnis, media.neliti.com, vol. 2, no. 1, pp. 2631, 2021.

M. Irpan, H. Suparto, A. Rizali , Uji Komposisi Media Tanam dan Pemberian Pupuk, Agroekotek View, vol. 4, no. 1, pp. 3138, 2021.

F. Kautsar, A. M. Aqib, A. P. Sari, and A. Sholikhah, Etnomatematika Pada Aktivitas Petani Padi Kecamatan Ampelgading, ProSANDIKA UNIKAL (Prosiding Semin. Nas. Pendidik. Mat. Univ. Pekalongan), vol. 2, no. 1, pp. 1928.

M. Ahmed, R. Seraj, and S. M. S. Islam, The k-means algorithm: A comprehensive survey and performance evaluation, Electron., vol. 9, no. 8, pp. 112, 2020, doi: 10.3390/electronics9081295.

H. Song, J.-G. Lee, and W.-S. Han, "PAMAE: parallel k-medoids clustering with high accuracy and efficiency, Proceedings of the 23rd ACM SIGKDD, pp. 10871096, 2017, doi: 10.1145/3097983.3098098.

M. G. Johnson et al., A Universal Probe Set for Targeted Sequencing of 353 Nuclear Genes from Any Flowering Plant Designed Using k-Medoids Clustering, Syst. Biol., vol. 68, no. 4, pp. 594606, 2019, doi: 10.1093/sysbio/syy086.

C. Yuan and H. Yang, Research on K-Value Selection Method of K-Means Clustering Algorithm, JMultidisciplinary Scientific Journal, vol. 2, no. 2, pp. 226235, 2019, doi: 10.3390/j2020016.

M. Mustofa, Penerapan Algoritma K-Means Clustering pada Karakter Permainan Multiplayer Online Battle Arena, J. Inform., vol. 6, no. 2, pp. 246254, 2019, doi: 10.31311/ji.v6i2.6096.

S. Retno, Peningkatan Akurasi Algoritma K-Means dengan Clustering Purity Sebagai Titik Pusat Cluster Awal (Centroid)," Universitas Sumatera Utara., pp. 416, 2019.

R. K. Dinata, S. Safwandi, N. Hasdyna, and N. Azizah, Analisis K-Means Clustering pada Data Sepeda Motor, INFORMAL Informatics J., vol. 5, no. 1, p. 10, 2020, doi: 10.19184/isj.v5i1.17071.

S. Hajar, A. A. Novany, A. P. Windarto, A. Wanto, and E. Irawan, Penerapan K-Means Clustering Pada Ekspor Minyak Kelapa Sawit Menurut Negara Tujuan, Semin. Nas. Teknol. Komput. Sains, pp. 314318, 2020.

K. F. Irnanda, A. P. Windarto, I. S. Damanik, and ..., Penerapan K-Means pada Proporsi Individu dengan Keterampilan (Teknologi Informasi dan Komunikasi) TIK Menurut Wilayah, Teknol. Inf. , no. c, pp. 452456, 2019, [Online]. Available: http://seminar-id.com/prosiding/index.php/sensasi/article/view/344.

N. Hasdyna, B. Sianipar, and E. M. Zamzami, Improving the Performance of K-Nearest Neighbor Algorithm by Reducing the Attributes of Dataset Using Gain Ratio, J. Phys. Conf. Ser., vol. 1566, no. 1, 2020, doi: 10.1088/1742-6596/1566/1/012090.

Hartono, O. S. Sitompul, Tulus, and E. B. Nababan, Biased support vector machine and weighted-SMOTE in handling class imbalance problem, Int. J. Adv. Intell. Informatics, vol. 4, no. 1, pp. 2127, 2018, doi: 10.26555/ijain.v4i1.146.

K. Sirait, Tulus, and E. B. Nababan, K-Means Algorithm Performance Analysis with Determining the Value of Starting Centroid with Random and KD-Tree Method, J. Phys. Conf. Ser., vol. 930, no. 1, 2017, doi: 10.1088/1742-6596/930/1/012016.


Copyright (c) 2021 Rozzi Kesuma Dinata, Novia Hasdyna, Sujacka Retno, Muhammad Nurfahmi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.