Implementation of Deep Learning for Handwriting Imagery of Sundanese Script Using Convolutional Neural Network Algorithm (CNN)


Arif Purnama(1); Saeful Bahri(2); Gunawan Gunawan(3); Taufik Hidayatulloh(4*); Satia Suhada(5);

(1) Universitas Bina Sarana Informatika
(2) Universitas Nusa Mandiri
(3) Universitas Bina Sarana Informatika
(4) Universitas Bina Sarana Informatika
(5) Universitas Nusa Mandiri
(*) Corresponding Author

  

Abstract


Aksara Sunda becomes one of the cultures of sundanese land that needs to be preserved. Currently, not all people know Aksara Sunda because of the shift in cultural values and there is a presumption that Aksara Sunda is difficult to learn because it has a unique and complicated shape. The use of deep learning has been widely used, especially in the field of computer vision to classify images, one of the commonly used algorithms is the Convolutional Neural Network (CNN). The application of The Convolutional Neural Network (CNN) algorithm on sundanese handwriting imagery can make it easier for people to learn Sundanese script, this study aims to find out how accurate the neural network convolutional algorithm is in classifying Aksara Sunda imagery. Data collection techniques are done by distributing questionnaires to respondents. System testing using accuracy tests, testing on CNN models using data testing get 97.5% accuracy and model testing using applications get 98% accuracy. So based on the results of the trial, the implementation of deep learning methods using neural network convolution algorithms was able to classify the handwriting image of Aksara Sunda well.


Keywords


Deep Learning; Convolutional Neural Network; Computer Vision; Aksara Sunda; Classification of Images

  
  

Full Text:

PDF
  

Article Metrics

Abstract view: 691 times
PDF view: 214 times
     

Digital Object Identifier

doi  https://doi.org/10.33096/ilkom.v14i1.989.10-16
  

Cite

References


H. Fatah, Analisis Pengaruh Aplikasi Pembelajaran Aksara Sunda Terhadap Pemahaman Siswa dengan Metode Tam, Sistemasi, vol. 9, no. 1, p. 82, 2020, doi: 10.32520/stmsi.v9i1.590.

I. Chaidir, Y. Erwanto, and F. W. Handono, Perancangan Aplikasi Pembelajaran Aksara Sunda Berbasis Android, J I M P - J. Inform. Merdeka Pasuruan, vol. 4, no. 3, pp. 4147, 2020, doi: 10.37438/jimp.v4i3.231.

F. F. Maulana and N. Rochmawati, Klasifikasi Citra Buah Menggunakan Convolutional Neural Network, J. Informatics Comput. Sci., vol. 01, pp. 104108, 2019.

N. Sharma, V. Jain, and A. Mishra, An Analysis of Convolutional Neural Networks for Image Classification, Procedia Comput. Sci., vol. 132, no. Iccids, pp. 377384, 2018, doi: 10.1016/j.procs.2018.05.198.

Y. Wang and Y. Wu, Scene Classification with Deep Convolutional Neural Networks, 2014.

H.- Harafani, Forward Selection pada Support Vector Machine untuk Memprediksi Kanker Payudara, J. Infortech, vol. 1, no. 2, pp. 131139, 2020, doi: 10.31294/infortech.v1i2.7398.

14611209 Triakno Nurhikmat, Implementasi Deep Learning Untuk Image Classification Menggunakan Algoritma Convolutional Neural Network (CNN) Pada Citra Wayang Golek, Universitas Islam Indonesia, May 2018.

I. W. Suartika E.P, A. Y. Wijaya, and R. Soelaiman, Klasifikasi Citra Menggunakan Convolutional Neural Network (Cnn) pada Caltech 101, J. Tek. ITS, vol. 5, no. 1, pp. A65A69, 2016.

I. Baidillah et al., Direktori Aksara Sunda untuk Unicode, 1st ed. Bandung: Dinas Pendidikan Provinsi Jawa Barat, 2008.

I. Nurwansah, Jati Suda : Gambaran Ringkas Perjalanan Menuju Moksa ( Lontar Sunda Kuna L 632b Peti 16 ), J. SUNDALANA, vol. 1, no. 1, pp. 429, 2020.

I. Nurwansah, Aksara Sunda Font Standar dan Ragamnya. Sukabumi: Tim Programmer Aksara Sunda (PRADA), 2015.

I. Wulandari, H. Yasin, and T. Widiharih, Klasifikasi Citra Digital Bumbu Dan Rempah Dengan Algoritma Convolutional Neural Network (CNN), J. Gaussian, vol. 9, no. 3, pp. 273282, 2020, doi: 10.14710/j.gauss.v9i3.27416.

W. Andriyani, Korelasi antara Artificial Intelligence, Machine Learning dan Deep Learning - Algoritma, Aug. 2020.

W. Dadang, Memahami Kecerdasan Buatan berupa Deep Learning - Machine Learning, 2018.

P. Arfienda, Materi Pendamping Memahami Convolutional Neural Networks Dengan Tensorflow, 2019.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Gunawan Gunawan, Arif Purnama, Taufik Hidayatulloh, Saeful Bahri, Satia Suhada

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.