Influence of gray level co-occurrence matrix for texture feature extraction on identification of batik motifs using k-nearest neighbor


Zulfrianto Yusrin Lamasigi(1*); Andi Bode(2);

(1) Universitas Ichsan Gorontalo
(2) Universitas Ichsan Gorontalo
(*) Corresponding Author

  

Abstract


Batik is one type of fabric that is unique because it has a special motif, in Indonesia itself batik is unique because it has certain motifs that are made based on the culture from which batik was made. This study aims to examine the effect of the texture feature extraction method on the identification of batik motifs from five major islands in Indonesia. The method used in this study is the Gray Level Co-occurrence Matrix as the texture feature extraction of batik motifs to obtain good batik motif identification accuracy results and to determine the value of the proximity of the training data and image testing of batik motifs, the K-Nearest Neighbor classification method will be used based on texture feature extraction value obtained. In this experiment, 5 experiments will be carried out based on angles 0degrees, 45degrees, 90degrees, 135degrees, and 180degreesusing the values of k is1, 3, 5, and 7. The confusion matrix will be used to calculate the accuracy level of the K-Nearest Neighbor classification. From the results of experiments carried out using training data as many as 607 images and testing as many as 344 images in five classes used with angles of 0 degrees, 45degrees, 90degrees, 135degrees, 180degrees, and values of k are 1, 3, 5, and 7, getting the highest accuracy results is at an angle of 135degreesand 180degreeswith a value of k is 1 of 89.24% and the lowest is at an angle of 90degreeswith a value of k is 3 of 67.44%. This shows that the Gray level co-occurrence matrix method is good for extracting the texture features of batik motifs from five major islands in Indonesia, it is evidenced by the results of the average accuracy of the classification obtained.

Keywords


Gray Level Co-Occurrence Matrix; K-Nearest Neighbour; Confusion Matrix; Feature Extraction; Identification of batik motif

  
  

Full Text:

PDF
  

Article Metrics

Abstract view: 341 times
PDF view: 128 times
     

Digital Object Identifier

doi  https://doi.org/10.33096/ilkom.v13i3.1025.322-333
  

Cite

References


D. Nurcahyanti and T. Bina Affanti, Pengembangan Desain Batik Kontemporer Berbasis Potensi Daerah Dan Kearifan Lokal, J. Sosioteknologi, vol. 17, no. 3, pp. 391402, 2018, doi: 10.5614/sostek.itbj.2018.17.3.7.

G. Manfredi, D Evelopment of I Nnovative S Eismic D Esign C Riteria for, Design, pp. 173222, 2009.

A. A. Kasim and A. Harjoko, Klasifikasi Citra Batik Menggunakan Jaringan Syaraf Tiruan Berdasarkan Gray Level Co- Occurrence Matrices ( GLCM ), Semin. Nas. Apl. Teknol. Inf. Yogyakarta, 21 Juni 2014, pp. 713, 2014.

J. W. Yodha and A. W. Kurniawan, Pengenalan Motif Batik Menggunakan Deteksi Tepi Canny Dan K-Nearest Neighbor, Techno.COM, vol. 13, no. 4, November, pp. 251262, 2015.

H. Wijayanto, Klasifikasi Batik Menggunakan Metode K-Nearest Neighbour Berdasarkan Gray Level Co-Occurrence Matrices ( GLCM ), Jur. Tek. Inform. FIK UDINUS, no. 5, 2014.

N. L. W. S. R. Ginantra, Deteksi Batik Parang Menggunakan Fitur Co-Occurence Matrix Dan Geometric Moment Invariant Dengan Klasifikasi KNN, Lontar Komput. J. Ilm. Teknol. Inf., vol. 7, no. 1, p. 40, 2016, doi: 10.24843/lkjiti.2016.v07.i01.p05.

Z. Y. Lamasigi, DCT Untuk Ekstraksi Fitur Berbasis GLCM Pada Identifikasi Batik Menggunakan K-NN, Jambura J. Electr. Electron. Eng., vol. 3, no. 1, pp. 16, 2021, doi: 10.37905/jjeee.v3i1.7113.

R. A. Surya, A. Fadlil, and A. Yudhana, Ekstraksi Ciri Citra Batik Berdasarkan Tekstur Menggunakan Metode Gray Level Co Occurrence Matrix, Prosiding, 6 Desember 2016, Vol 2 No. 1, vol. 2, no. 1, pp. 146150, 2016.

R. A. Pramunendar, C. Supriyanto, D. H. Novianto, I. N. Yuwono, G. F. Shidik, and P. N. Andono, A classification method of coconut wood quality based on Gray Level Co-occurrence matrices, Proc. 2013 Int. Conf. Robot. Biomimetics, Intell. Comput. Syst. ROBIONETICS 2013, no. November, pp. 254257, 2013, doi: 10.1109/ROBIONETICS.2013.6743614.

C. S. K. Aditya, M. Haniah, R. R. Bintana, and N. Suciati, Batik classification using Neural network with gray level Co-occurrence matrix and Statistical Color Feature Extraction, pp. 163168, 2015.

F. Mirzapour and H. Ghassemian, Using GLCM and Gabor filters for classification of PAN images, 2013 21st Iran. Conf. Electr. Eng. ICEE 2013, no. 1, 2013, doi: 10.1109/IranianCEE.2013.6599565.

A. E. Minarno, Y. Munarko, A. Kurniawardhani, F. Bimantoro, and N. Suciati, Texture Feature Extraction Using Co-Occurrence Matrices of Sub-Band Image For Batik Image Classification, Int. Conf. Inf. Commun. Technol., pp. 249254, 2014.

Z. Y. Lamasigi, M. Hasan, and Y. Lasena, Local Binary Pattern untuk Pengenalan Jenis Daun Tanaman Obat menggunakan K-Nearest Neighbor, Ilk. J. Ilm., vol. 12, no. 3, pp. 208218, 2020, doi: 10.33096/ilkom.v12i3.667.208-218.

C. Jatmoko and D. Sinaga, Ektraksi Fitur Glcm Pada K-Nn Dalam Mengklasifikasi Motif Batik, Pros. SENDI_U 2019, pp. 978979, 2019.

T. Y. Prahudaya and A. Harjoko, Metode Klasifikasi Mutu Jambu Biji Menggunakan Knn Berdasarkan Fitur Warna Dan Tekstur, J. Teknosains, vol. 6, no. 2, p. 113, 2017, doi: 10.22146/teknosains.26972.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Zulfrianto Yusrin Lamasigi, Andi Bode

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.