K-Means and K-Medoid in Clustering Analysis of Network Congestion Level
Herdianti Darwis(1*); Purnawansyah Purnawansyah(2); Alfi Syahrin Umalekhoa(3); Adam Adnan(4); Yulita Salim(5); Fitriyani Umar(6); Roesman Ridwan Raja(7); Muh. Aqil Fajar AR(8);
(1) Universitas Muslim Indonesia
(2) Universitas Muslim Indonesia
(3) Universitas Muslim Indonesia
(4) Universitas Muslim Indonesia
(5) Universiti Kuala Lumpur
(6) Universitas Muslim Indonesia
(7) Kyushu Institute of Technology
(8) Universitas Muslim Indonesia
(*) Corresponding Author
AbstractThis research investigates the application of clustering techniques to network congestion data at Universitas Muslim Indonesia, employing a hybrid metric approach based on packet loss and delay. The study utilized two algorithms, K-Means and K-Medoid, applied in a semi-supervised scenario to group 255,147 network data points into 3, 4, and 5 clusters, considering 10 principal variables. During the pre-processing phase, data cleansing was conducted to address missing values, followed by normalization to standardize the scale of numerical variables, thereby preparing the data for the clustering process. Model validation was performed using four cluster evaluation methods: Gap Statistic, Davies-Bouldin Index, and Elbow Method. The evaluation results indicate that both algorithms were capable of forming valid and reliable clusters. However, the K-Means algorithm demonstrated superior performance compared to K-Medoid, particularly when utilizing three Quality of Service variables: throughput, packet loss, and delay. In this configuration, K-Means yielded more stable clusters, a clearer separation between clusters, and a more structured visualization. Consequently, K-Means is considered more optimal for classifying network congestion levels and presents an effective approach for network data segmentation
KeywordsNetwork Congestion Clusters; Davies Bouldin Index; Elbow method; Gap-Statistic; K-Means; QoS Parameters
|
Full Text:PDF |
Article MetricsAbstract view: 0 timesPDF view: 0 times |
Digital Object Identifier https://doi.org/10.33096/ilkom.v17i3.2083.323-335
|
Cite |
References
D. Sunitha, K. R. Balmuri, R. P. de Prado, P. B. Divakarachari, R. Vijayarangan, and K. L. Hemalatha, “Congestion centric multi-objective reptile search algorithm-based clustering and routing in cognitive radio sensor network,” Trans. Emerg. Telecommun. Technol., vol. 34, no. 11, p. e4629, 2023, doi: https://doi.org/10.1002/ett.4629.
S. Bauer, D. Clark, and W. Lehr, “The Evolution of Internet Congestion,” 37th Res. Conf. Commun. Inf. Internet Policy, vol. 64, no. August 2009, pp. 1–34, 2009, doi: 10.1016/j.addbeh.2015.05.016
C. Ma, J. P. Sheu, and C. X. Hsu, “A game theory based congestion control protocol for wireless personal area networks,” J. Sensors, vol. 2016, 2016, doi: 10.1155/2016/6168535.
M. Pundir and J. K. Sandhu, “A Systematic Review of Quality of Service in Wireless Sensor Networks using Machine Learning: Recent Trend and Future Vision,” J. Netw. Comput. Appl., vol. 188, no. April, p. 103084, 2021, doi: 10.1016/j.jnca.2021.103084.
C. Sergiou, P. Antoniou, and V. Vassiliou, “A comprehensive survey of congestion control protocols in wireless sensor networks,” IEEE Commun. Surv. Tutorials, vol. 16, no. 4, pp. 1839–1859, 2014, doi: 10.1109/COMST.2014.2320071.
M. Gholipour et al., “Author ’ s Accepted Manuscript Hop-by-Hop Congestion Avoidance in Wireless Machine Reference : To appear in : Neurocomputing Hop-by-Hop Congestion Avoidance in Wireless Sensor Networks Based on Genetic Support Vector Machine,” IEEE Commun. Surv. Tutorials, vol. 16, no. 4, pp. 1839–1859, 2016, doi: 10.1109/COMST.2014.2320071.
K. Wang, C. Ma, Y. Qiao, X. Lu, W. Hao, and S. Dong, “A hybrid deep learning model with 1DCNN-LSTM-Attention networks for short-term traffic flow prediction,” Phys. A Stat. Mech. its Appl., vol. 583, p. 126293, 2021, doi: https://doi.org/10.1016/j.physa.2021.126293.
M. K. Kodmelwar, R. Kumar, J. Singh, R. Kumar, T. Ramachandran, and G. Ramya, “An Advanced Encryption Protocols for Wireless Network Security in Web Applications,” in 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), 2024, pp. 1–5. doi: 10.1109/ICCCNT61001.2024.10725848.
J. Y. Colin, H. Mathieu, and M. Nakechbandi, “A proposal for an open logistics interconnection reference model for a Physical Internet,” Proc. 3rd IEEE Int. Conf. Logist. Oper. Manag. GOL 2016, 2016, doi: 10.1109/GOL.2016.7731719.
A. Piotrowska, “On cross-layer interactions for congestion control in the internet,” Appl. Sci., vol. 11, no. 17, 2021, doi: 10.3390/app11177808.
A. A. Rezaee and F. Pasandideh, “A Fuzzy Congestion Control Protocol Based on Active Queue Management in Wireless Sensor Networks with Medical Applications,” Wirel. Pers. Commun., vol. 98, no. 1, pp. 815–842, 2018, doi: 10.1007/s11277-017-4896-6.
J. Lorincz, Z. Klarin, and J. Ožegović, “A comprehensive overview of tcp congestion control in 5g networks: Research challenges and future perspectives,” Sensors, vol. 21, no. 13, 2021, doi: 10.3390/s21134510.
B. Turkovic, F. A. Kuipers, and S. Uhlig, “Fifty Shades of Congestion Control: A Performance and Interactions Evaluation,” arXiv:1903.03852, 2019, doi: https://doi.org/10.3390/s21134510.
B. Zhou, D. He, and Z. Sun, “Traffic Modeling and Prediction
using ARIMA/GARCH Model,” in Modeling and Simulation Tools for Emerging Telecommunication Networks, A. Nejat Ince and E. Topuz, Eds., Boston, MA: Springer US, 2006, pp. 101–121. doi: https://doi.org/10.1007/0-387-34167-6_5.
E. I. Alwi and L. B. Ilmawan, “Analisis Kinerja QoS (Quality of Service) Jaringan WLAN Ukhuwahnet Pada Universitas Muslim Indonesia,” Semin. Nas., pp. 55–60, 2019, doi: https://doi.org/10.29407/inotek.v3i1.513.
P. Purnawansyah, “Congestion Predictive Modelling on Network Dataset Using Ensemble Deep Learning,” J. Appl. Data Sci., vol. 5, no. 4, pp. 1597–1613, Dec. 2024, doi: 10.47738/jads.v5i4.333.
I. Nurhaida and I. Ichsan, “Congestion Control Pada Jaringan Komputer Berbasis Multi Protocol Label Switching (Mpls),” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 11, no. 1, pp. 77–88, 2020, doi: 10.24176/simet.v11i1.3671.
X. Zhou, W. Liang, K. I.-K. Wang, and L. T. Yang, “Deep Correlation Mining Based on Hierarchical Hybrid Networks for Heterogeneous Big Data Recommendations,” IEEE Trans. Comput. Soc. Syst., vol. 8, no. 1, pp. 171–178, 2021, doi: 10.1109/TCSS.2020.2987846.
S. A. Curiskis, B. Drake, T. R. Osborn, and P. J. Kennedy, “An evaluation of document clustering and topic modelling in two online social networks: Twitter and Reddit,” Inf. Process. Manag., vol. 57, no. 2, p. 102034, 2020, doi: https://doi.org/10.1016/j.ipm.2019.04.002.
W. Balzano, A. Murano, L. Sorrentino, and S. Stranieri, “Behavioral Clustering: A New Approach for Traffic Congestion Evaluation,” L. Barolli, F. Amato, F. Moscato, T. Enokido, and M. Takizawa, Eds., Cham: Springer International Publishing, 2020, pp. 1418–1427. doi: 10.1007/978-3-030-44038-1_129.
A. Et-Taleby, M. Boussetta, and M. Benslimane, “Faults detection for photovoltaic field based on k-means, elbow, and average silhouette techniques through the segmentation of a thermal image,” Int. J. Photoenergy, vol. 2020, 2020, doi: 10.1155/2020/6617597.
K. Kandali, L. Bennis, and H. Bennis, “A New Hybrid Routing Protocol Using a Modified K-Means Clustering Algorithm and Continuous Hopfield Network for VANET,” IEEE Access, vol. 9, pp. 47169–47183, 2021, doi: 10.1109/ACCESS.2021.3068074.
Y. Sinambela, S. Herman, A. Takwim, and S. R. Widianto, “a Study of Comparing Conceptual and Performance of K-Means and Fuzzy C Means Algorithms (Clustering Method of Data Mining) of Consumer Segmentation,” J. Ris. Inform., vol. 2, no. 2, pp. 49–54, 2020, doi: 10.34288/jri.v2i2.116.
T. Widiyaningtyas, M. I. W. Prabowo, and M. A. M. Pratama, “Implementation of K-means clustering method to distribution of high school teachers,” 2017 4th Int. Conf. Electr. Eng. Comput. Sci. Informatics, no. September, pp. 1–6, 2017, doi: 10.1109/EECSI.2017.8239083.
A. Sobrinho Campolina Martins, L. Ramos de Araujo, and D. Rosana Ribeiro Penido, “K-Medoids clustering applications for high-dimensionality multiphase probabilistic power flow,” Int. J. Electr. Power Energy Syst., vol. 157, no. February, 2024, doi: 10.1016/j.ijepes.2024.109861.
S. Sen, L. Sahoo, K. Tiwary, V. Simic, and T. Senapati, “Wireless Sensor Network Lifetime Extension via K-Medoids and MCDM Techniques in Uncertain Environment,” Appl. Sci., vol. 13, no. 5, 2023, doi: 10.3390/app13053196.
D. Thi Thu Nguyen, L. V Chernenkaya, and H. Van Le, “A Model for Classification Based on the K-Means Method Using the Gap-Statistic Algorithm,” J. C. Bansal, H. Sharma, and A. Chakravorty, Eds., Singapore: Springer Nature Singapore, 2023, pp. 351–363. doi: 10.1007/978-981-99-2468-4_27.
I. D. Sudirman, I. Rahmatillah, and O. O. Sharif, “An Examination of Plastic Bag Consumption by Age, Gender, and Spending Using K-Means and Elbow Method,” in 2023 International Conference on Informatics Engineering, Science & Technology (INCITEST), 2023, pp. 1–6. doi: 10.1109/INCITEST59455.2023.10396903.
T. T. D. Nguyen, L. T. T. Nguyen, Q.-T. Bui, U. Yun, and B. Vo, “An efficient topological-based clustering method on spatial data in network space,” Expert Syst. Appl., vol. 215, p. 119395, 2023, doi: https://doi.org/10.1016/j.eswa.2022.119395.
J. Manullang, P. Sirait, and Andri, “Aplication of Validity Index in K Means and Fuzzy C Means,” J. Mantik, vol. 4, no. 2, pp. 1430–1438, 2020, doi: https://doi.org/10.35335/mantik.Vol4.2020.958.pp1430-1438
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Herdianti Darwis, Purnawansyah Purnawansyah, Alfi Syahrin Umalekhoa, Adam Adnan, Yulita Salim, Fitriyani Umar, Roesman Ridwan Raja, Muh. Aqil Fajar AR

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.





